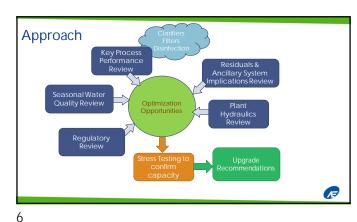


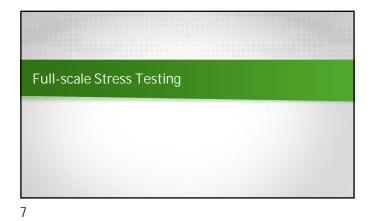
Why Optimization?

- Making the best use of existing assets
- Deferral of major capital investment for expansion
- Minor retrofits to accommodate additional treatment objectives
- Incorporating newer technologies within the footprint
- · Additional capacity within the existing footprint
- Improve treatment performance
- Reduce operational costs
- · Other site-specific drivers

3


Optimization Team

- Technical team
- Operations (historical knowledge, • plant issues)
- · Maintenance (PM schedules, ongoing equipment issues, upgrades)
- Management (Resourcing, costs, awareness of risks)


4

Æ

Æ

Why Stress Testing?

- Estimates for optimization need to be validated through actual operation
- Some issues are unpredictable and only seen at full scale
- Test drive? •
- Stress testing can be an effective • tool

8

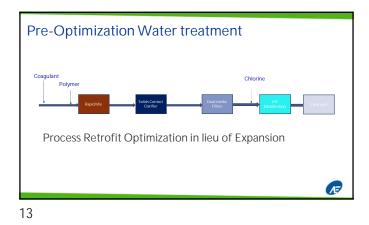
Pilot vs Full-scale Tests

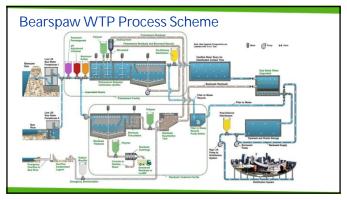
- Piloting: Less risks
- Could be first step in a staged approach •
- Piloting won't reveal all • potential issues
- Full scale is preferred whenever possible

Stress Test Planning				
oness rest i lanning		Low Temperature	Moderate Temperature	High Temperature
	Low Turbidity	Nov, Dec, Jan, Feb, Mar	n/a	nia
	Moderate Turbidity	nia	Apr, May, Oct	n/a
	High Turbidity	n/a	n/a	June
 Target flows? 				
 Capturing seasonal variatio 	n			
 Risk assessment 				
 Resourcing, scheduling 				
 Regulatory notifications 				
 Sampling & testing 				

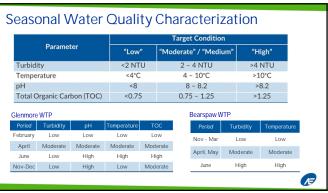
10

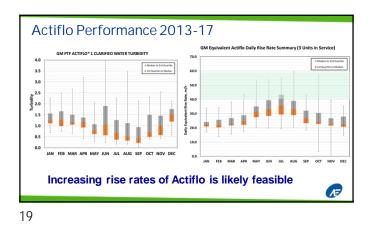
Æ

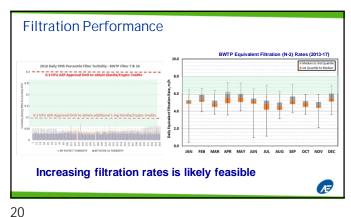

- Sludge recirculation pumps off
- Issues noted at 120 L/s


9

Æ







Hydraulic Assessment MITLE Desktop hydraulic model available Hydraulic calibration exercise- Full scale tests Plants were operated at progressively higher flows Water levels measured throughout plant Levels used to calibrate & Headlosses predicted Figure 3-36 BWTP Hydraulic Profile at 675 ML/d Bearspaw WTP: • Glenmore WTP: : Hydraulic capacity estimated = 675 ML/d Hydraulic capacity estimated = Bottlenecks 575 ML/d Inlet to clarified water basins Bottlenecks Filter inlet piping into STG1 and Inlet to clarified water basin STG2 Æ 21

22

the City's target of increasing 150ML/d is achievable,
it can defer the major WTP upgrades for 10+ years

Planning Goals Met?

 $\bullet\,$ WTP Optimization for 150 ML/d (\$15-20 M) If the target of 150 ML/d is achievable

Combined firm capacity of all WTPs shall meet MDD within a <u>5-year</u> Horizon
 650 + 450 ML/d (firm) to provide +150 ML/d additional capacity

Additional 150 ML/d firm capacity achieved with \$15 M
 Compared to Phase 1: 150 ML/d new WTP at \$250 M

