

Applicability of Hydrothermal Pretreatment for Municipal Sludge: Anaerobic Digestibility and Dewaterability

Abir Hamze, Ph.D. (abir.hamze@torontomu.ca)

Dr. Elsayed Elbeshbishy, TMU

Dr. Mohamad Zaghloul,TMU

Dr. Bipro Dhar, UOA

Dr. Basem Reda, UOA

Presentation Outline

- ➤ Global MSW Problem
- Conventional Vs.
 Hydrothermal Pretreated
 Anaerobic Digestion
- ➤ Materials & Method
- > Results
- **≻** Conclusions
- ➤ Q&A

Problem Statement

• 45 million tons of dry sludge per year

Wastewater Treatment Plant (WWTP)

Linear Economy

Water Resource Recovery Facility (WRRF)

Circular Economy

Water Resource Recovery Facility (WRRF)

Circular Economy

Wastewater Treatment Plant (WWTP)

Water Resource Recovery Facility (WRRF)

Circular Economy

Wastewater Treatment Plant (WWTP)

Wastewater Resource Recovery Facility (WRRF)

Circular Economy

- Technological Aspects
- Socio-environmental Aspects
- Economical Aspects

Compounds/ products	Enzymes	Microorganisms
Sugars Amino Acids Fatty Acids	Amylase, Proteases, Depolymerases, Lipases, Pectinases	Hydrolytic Bacteria
Acetate, Butyrate, Propionate, valerate, CO ₂ , NH ₃	Hydrolases	Acidogenic Bacteria
Acetic Acid, Formate, Alcohols, CO _{2,} H ₂	Dehydrogenases, Transferases, Oxidoreductases	Acetogenic Bacteria
CH ₄ , CO _{2,} H ₂ S	Methyl-coenzyme, M reductase, Transferases, Transacetylase, Dehydrogenases	Methanogens: Acetoclastic Hydrogenotrophic

- Relatively long HRT (risk of instability)
- Low overall hydrolysis efficiency

Anaerobic Digestion

Multifunctional Process:

- ➤ Treating waste streams
- ➤ Generating bioenergy
- ➤ Mitigating GHG emissions
- ➤ Recycle nutrients
- ➤ Produce value-added products

HTP| Semi-continuous for sludge AD

Experimental Conditions & Set-up

TWAS from ABTP

HTP conditions: T=170 °C, P= 3 bars, t= 30 min

6 bioreactors (1800 mL)

HRT= SRT= 15 days

Working Volume= 1500 mL

Mesophilic Conditions

All analyses performed in duplicates or triplicates

		Raw TWAS		HTP TWAS	
Parameter	Units	Ave ± standard deviation	Range	Ave ± standard deviation	Range
TCOD	g/L	33 ± 4	30.6 – 45	32 ± 3	29 – 44
SCOD	mg/L	213 ± 31	184 – 270	14679 ± 2442	12444 – 19973
TS	g/L	38 ± 5.7	32 – 48.5	31.5 ± 5	26.5 – 40.5
TSS	g/L	32 ± 5	27 – 41	19.5 ± 2.5	16.8 – 24
VS	g/L	33 ± 5	27.5 – 43	26.5 ± 4	22.5 – 34
VSS	g/L	25 ± 4	21 – 32	12.0 ± 1.5	10.5 – 15
VFA	mg HAc/L	41 ± 6.5	35 – 53	1256 ± 194.5	1078 – 1644
Viscosity	сР	509 ± 57	425 – 603	18 ± 3	14 – 20
рН		6.6 ± 0.2	6.3 – 6.8	5.8 ± 0.03	5.8 – 5.9

HTP| Semi-continuous for sludge AD

HTP| Semi-continuous for sludge AD

	RAW TWAS	HTP TWAS
Average daily methane (mL/day)	365	551
Biogas production rate (L/L/d)	0.65	0.85
Methane % in biogas	55	65
VSD (%)	50	63
Methane yield (mL/g TCOD _{added})	116	176
Methane yield (mL/g VSS _{added})	169	255
TCOD removal (%)	40	50

-Yield enhancement 51% -Biodegradability increase 30%

- > Degree of Solubilization
- > Solids Solubilization
- Particle size distribution
- > TAN
- > Viscosity
- > Stability of the system

HTP | Semi-continuous for sludge AD

Degree of Solubilization

- HTP increased the solubilization level to 41%
- SCOD increased from an average value of 213 mg/L in Raw TWAS to about 15000 mg/L in HTP TWAS → particulate organics has been solubilized

Solids Solubilization

- VSS/VS ratios decreased from 0.75 to 0.45
- TSS/TS ratios decreased from 0.85 to 0.62
- → HTP enhances the mineralization of organic solids

HTP | Semi-continuous for sludge AD

Particle size distribution

- The mean diameter of particles shifted from 206 to $104 \ \mu m$
- Anaerobic microorganisms' maximum substrate utilization rate is inversely proportional to the particle size

TAN

- A noticeable increase in total ammonia nitrogen (TAN) was observed from 51 mg/L to 261 mg/L
- → HTP enhances the hydrolysis of nitrogen-enriched organics (such as proteins)

Viscosity

- HTP decreased viscosity from 510 cP to 18 cP (equivalent to a 96% drop)
- → Polyacrylamide (PAM) sludge floccules were destroyed, allowing extracellular and intracellular organic matter to be released in the aqueous phase

Stability of the system

• pH of HTP bioreactors ranges between 7.7 and 7.9 pH of Raw TWAS ranges between 7.5-7.7 VFA/Alk ratios of 0.19 (RAW TWAS) and 0.26 (HTP TWAS)

(FAN) was 22 and 35 mg/L for raw and HTP TWAS

HTP| Microbial Community

HTP led to increased microbial diversity and richness

	Chao1	Pielou evenness	Faith Phylogenetic distance	OTUs	Shannon
Raw TWAS	120	0.84	10.3	105	5.9
HTP TWAS	224	0.89	19.8	210	6.9

	RAW TWAS	HTP TWAS
Bacterial Community	- Chloroflexi (hydrolyze carbohydrates) was higher - VFAs oxidizers, potential roles in hydrolysis and acidogenesis	- Abundance of fermenters and hydrolytic bacteria ↑ (Firmicutes (25%), Bacteroidetes (23%), Proteobacteria (17%), and Synergistetes (3.3%)) -Degrade various organics (cellulose & proteins) -Tissierellaceae & Porphyromonadaceae (positively correlated with high methane production)
Archaeal Community	- genus Methanosarcina (65%), genera Methanosaeta (19%), Methanobacterium (11%) & Methanobrevibacter (6%)	Euryarchaeota phylum ↑ (methanogens ↑) - acetoclastic Methanosaeta was reduced - hydrogenotrophic methanogens (Methanobrevibacter (27%), Methanobacterium (16%) & Methanoculleus (7%) significantly increase Hydrogenotrophic methanogens generally exhibit greater resistance to environmental changes (e.g., high ammonia levels) than acetoclastic methanogens

HTP + AD Impact on Dewaterability

> Inefficient dewatering increases the costs of sludge disposal

HTP + AD Impact on Dewaterability

- ➤ No other technology competes with HTP in the production of Class A biosolids:
 - Highest quality classification of treated sewage sludge (USEPA)
 - Free from harmful pathogens & odors
 - Suitable for land application as fertilizers, soil conditioners, certain landscaping & land reclamation purposes

- Solids content in the cake increased from 82 g/L to 164 g/L in the ADS HTP TWAS digesters (2-fold increase)
- Capillary suction time (CST) decreased from 1180 s to 270 s

HTP modifies sludge characteristics (filterability & viscosity) through the breakdown of gel structure and release of intracellular-bound water

Hydrothermal pretreatment aligns with the circular economy principles by efficiently converting organic waste into both energy and valuable resources "Waste-to-energy Strategy"

- ➤ Enhances Biogas Production
- > Improves dewaterability of ADS
- The nutrient-rich digestate can be repurposed as a valuable fertilizer, closing nutrient cycles and supporting sustainable agriculture
- > The process reduces the overall carbon footprint by capturing and utilizing methane, a potent greenhouse gas, for energy production
- ➤ Microbial community mitigates and minimizes the toxic effects of emerging contaminants such as PFAS compounds

Acknowledgment

DHAR LAB @ UALBERTA

Publications

- 1- Abir Hamze; Mohamed Sherif Zaghloul; Basem Zakaria; Bipro Dhar; Elsayed Elbeshbishy. Hydrothermal pretreatment for semi-continuous sludge anaerobic digestion: Impact on digester performance, sludge dewaterability and microbial community. *To be submitted to Waste Management Journal*
- 2- Abir Hamze; Mohamed Sherif Zaghloul; Bipro Dhar; Basem Zakaria; Roxana Suehring, Rania Hamza; Elsayed Elbeshbishy. Fate of Per and polyfluoroalkyl substances (PFAS) in Anaerobic Digestion with Hydrothermal Pretreatment of Sludge. *To be submitted to Waste Management Journal*
- 3- Abir Hamze; Mohamed Sherif Zaghloul; Bipro Dhar; Elsayed Elbeshbishy. Effects of Ydro Process Biotechnology on Dark Fermentation and Anaerobic Digestion. To be submitted to Bioresource Technologies

Conferences

- 1. Abir Hamze; Mohamed Sherif Zaghloul; Bipro Dhar; Elsayed Elbeshbishy (2023). The Impact of Hydrothermal Pretreatment on Municipal Sludge Dewaterability. 2nd Canadian IWA YWP Conference June 2023
- 2. **Abir Hamze**; Mohamed Sherif Zaghloul; Basem Zakaria; Bipro Dhar; Elsayed Elbeshbishy (2023). Microbial Community changes due to Hydrothermal Pretreatment of the Thickened Waste Activated Sludge prior to Anaerobic Digestion. 2nd Canadian IWA YWP Conference June 2023
- 3. Mohamed S. Zaghloul, **Abir Hamze**, Reza Malekzadeh, Dimitrios Chrysochoou, Rania Ahmed Hamza, Elsayed, Elbeshbishy. Bioaugmentation A Novel Biological Pre-treatment of Biosolids to Improve Resource Recovery in Anaerobic Digestion and Fermentation. 2023 National Water and Wastewater Conference, Niagara Falls- November 2023
- 4. **Abir Hamze**; Mohamed Sherif Zaghloul; Bipro Dhar; Elsayed Elbeshbishy. Applicability of Hydrothermal Pretreatment for Municipal Sludge: Anaerobic Digestibility and Dewaterability. 2023 National Water and Wastewater Conference, Niagara Falls- November 2023

Book Chapter

Chapter 12: Decentralized Sanitation Implementation in Different Countries Mohamed S. Zaghloul, Abir Hamze, Farokh Laqa Kakar, Rania A. Hamza, Elsayed Elbeshbishy

