

#### **UV** reactor

(one of) the fastest growing water disinfection technology



#### **UV Reactor Vancouver**



#### **UV Reactor New York**



#### **Water Treatment Paris**



#### **UV-Led Advantages**



# UV LED



#### **UV-LED** Reactor



**UV Lamp** 



















## Complex Phenomena



## Virtual Prototyping



270 nm UV-LED (30mW)
Flow rate= 2 LPM (95% UVT)
Ecoli inactivation

## Virtual Prototyping Results

**Fluence rate** 



#### **Concentration**

 $LOG(N/N_0)$ 



## Virtual Prototyping



270 nm UV-LED (30mW)
Flow rate= 2 LPM (95% UVT)
Ecoli inactivation

## Virtual Prototyping Results



#### Point-Of-Use UV-LED Reactor



#### Point-Of-Use UV-LED Reactor

| Device                | Power consumption | UV-C power (app.) | flow rate |
|-----------------------|-------------------|-------------------|-----------|
| Conventional UV lamps | 13 W              | 4000 mW           | 4 LPM     |
| UV-LED Reactor        | 8 W               | 300 mW            | 4 LPM     |





## Virtual prototyping



## Prototyping



## Field Testing



## Point-Of-Entry UV-LED Reactor

| Device                   | Power consumption | UV-C power (app.) | flow rate |
|--------------------------|-------------------|-------------------|-----------|
| Conventional<br>UV lamps | 50 W              | 15000 mW          | 8.9 GPM   |
| UV-LED Reactor           | 33 W              | 2000 mW           | 8.5 GPM   |





#### **UV for Microbial & Chemical**

Inactivation of microorganisms



Degradation of contaminants







## UV-H<sub>2</sub>O<sub>2</sub> Reactor

Costs and hazards related to the transportation, storage, and handling of H<sub>2</sub>O<sub>2</sub>



## In Situ H<sub>2</sub>O<sub>2</sub> Generation



#### **UV-LED Electrochemical Photoreactor**



## UV-LED Photo-Electrochem Reactor Prototype



#### What is the Prediction for UV-LED Future



The emergence and prospects of deep-ultraviolet light-emitting diode technologies (Nature Photonics vol 13, p 233 (2019))

## Municipal UV-LED Treatment System







## Anything worth remembering?

☐ UV-LED is enabling creation of new technologies



☐ At UBC: UV-LED Technology Development & Transfer



☐ Next step: Large UV-LED....Welcome collaborators



