MICROPLASTICS IN WASTEWATER AND BIOSOLIDS – WHAT IS THE BIG DEAL?

Prof. Banu Örmeci Jarislowsky Chair in Water and Health Director, Global Water Institute Department of Civil and Environmental Engineering Carleton University Ottawa, CANADA

Plastic pollution

- ☐ In 2017, 350 million tons of plastics were produced globally
- □ PET, HDPE, PVC, LDPE, PP, PS and PUR constitute 90% of plastic waste
- □ In Canada, 86% of plastics are landfilled, 9% are recycled, 4% are incinerated, and 1% end up in the environment
- Plastics remain in the environment from hundreds to thousands of years
- No incentive for plastics recycling it is cheaper to produce plastics from raw materials
- Research and knowledge gaps in freshwater and terrestrial environments
- ☐ They are everywhere including air!

https://norwegianscitechnews.com

https://enlightngo.org

Plastics in water

- ☐ Plastics can be grouped by their size as macroplastics (>25 mm), mesoplastics (5–25 mm), microplastics (<5 mm) and nanoplastics (<0.1 m)
- Microplastics come from primary and secondary sources
- ☐ Microplastics can be fibers, fragments, spheres, pellets, films, and foams
- ☐ Rate of degradation is very slow and affected by abiotic (i.e., light, temperature, shear) and biotic (i.e., enzymes, microorganisms)
- Degradation rate is closely related to polymer chemistry, structure, morphology, and physical and mechanical behaviour

https://www.nationalgeographic.org

Talvitie et al., Water Research, 2017, 123:401-407

Microplastic sources

Pico et al. (2019), TrAC Trends in Analytical Chemistry, 113, 409-425.

In the context of wastewater and biosolids treatment

Knowledge needs Challenges Plastics size, shape, quantity, type ☐ Very challenging matrix ☐ Fate and transport No agreed sampling, quantification and identification methods ■ Leaching additives ☐ Huge variance in reported results ☐ Adsorption of chemicals ■ Lack of plant data and monitoring Carrier for pathogens and genes ■ Small microplastics and microfibers Biofilm formation ☐ Removal and monitoring technologies Inhibition mechanisms ☐ Regulatory landscape ■ Impact on treatment technologies **Environmental concerns** Health concerns

Microplastics at wastewater treatment plants

- Wastewater treatment is a <u>pathway</u> for microplastics to the aquatic environment
- Reported MP concentrations: 0-30,000 particles/L in influent and 0-3,000 particles/L in effluent.
- Approx. 5%, 70%, 90% and 95% removal during preliminary, primary (physical), secondary (biological) and tertiary (advanced) treatment
- Larger MPs (> 5 mm) are removed during primary treatment and smaller MPs (<1 mm) during biological/chemical coagulation and flocculation
- ☐ Well-operated plants with physical, chemical and biological treatment processes can remove 99%
- Most microplastics end up in sludge and some microfibers remain in effluent

Effect of Treatment Technologies on Microplastics

- Quantities, size, shape and composition change throughout wastewater treatment
 Primary treatment (grit removal, primary clarifiers, skimmers) is the first barrier
- ☐ Activated sludge traps and removes remaining small (< 0.5 mm) microplastics
- Chemical disinfection and advanced oxidation increases the microplastic quantities through chemical degradation
- Filtration based treatment technologies (biofilters, ultrafiltration, sand filters, MBR) have shown the best performance
- Remaining microfibers in treated effluents is an issue
- ☐ Effluent end-of-pipe technologies are expensive and cost-benefit is questionable

Effect of Microplastics on Treatment Technologies

- Additives released from microplastics can damage cells and inhibit activities of key enzymes and genes
- Microplastics can catalyze the generation of intracellular reactive oxygen species
- Microplastics influence the microbial community and activity
- At low microplastics concentrations, improvements in aerobic/anaerobic biological treatment have also been observed
- Nanoplastics can penetrate the cell membrane and have been shown to be more toxic
- ☐ Type, size and surface charge
- Operational conditions play a role

Biosolids

- ☐ Up to 99% of microplastics in wastewater end up in sludge
- Reported MP concentrations: 1,500-24,000 particles/kg dry solids
- ☐ Approx 100 tons/year MP enter soil environment in Europe and North America
- ☐ The higher the biosolids application rates, the higher the microplastics counts in soil
- ☐ No feasible removal technologies from biosolids
- ☐ Microplastics have been shown to adversely affect plant growth and soil microbial pollution
- ☐ Contribution from biosolids to agricultural is approx. 1% of other microplastics sources

Microplastics in biosolids

Fig. 7 Example images of the microplastics observed. Fibers (a, b, c), films (d, e), pellets (f), and fragments (g, h, i).

Results from our research group

Microplastics quantities and types in different sludges

Seasonal distribution of microplastics

About - Admissions -

Future students - Current students -

Q Search

(i) Visit our COVID-19 information website for latest updates

PhD students Kellie Boyle and Nimitha Cho

Microflow imaging for MP quantification in water and wastewater

(A) Flow cell (B) flow tube

Visualization and identification of microplastics in biosolids – hyperspectral imaging

Figure: (a) SEM image of untreated MFs at $20\mu m$, (b) 3-D structure of untreated MFs, (c) SEM image of untreated MPFs at $20\mu m$, (b) 3-D structure of untreated MPFs, (e) SEM image of NaOCI treated MFs at $20\mu m$, (f) 3-D structure of treated MFs, (g) SEM image of NaOCI treated MPFs at $20\mu m$, (h) 3-D structure of NaOCI treated MPFs.

Nanoplastics are released during treatment

MP spiked water samples – before mixing

MP spiked water samples – after mixing

Regulatory developments in Europe

Disposal of sewage sludge from urban wastewater treatment by method of disposal, 2018

Thank you!

Contact: banu.ormeci@carleton.ca

Methodology

Sample processing:

Digestion with Fenton's reagent at 60°C for 2 hours

Leave the mixture for 24hrs for complete digestion. Filter the supernatant

Leave the mixture for 24hrs for complete digestion. Filter the supernatant

Filter 1

Leave the mixture for 24hrs with ZnCl₂ (density = 1.6-1.7g/L) for 30min and leave for 24 hours

Filter 2

Quantification and Identification

Visual identification using Leica M165 C to isolate to presumed MPs1:

- No visible cellular or organic structure
- 2. Colored particles have a homogeneous color
- Plastic pieces are typically flexible and resistant to breaking from prodding

MPs were broadly classification into fibers, fragments and microbeads, along with colour

¹Hidalgo-Ruz et al. (2012)

Collaboration with industrial partners

- Research and technology acceleration project funded through ECCC Zero Plastic Waste
- Carry out innovative research on the monitoring of microplastics in water systems and the removal of microplastics and microfibers from wastewater
- Research is geared towards the needs of Canadian technology providers so that research results can find immediate uptake
- We provide the know-how and technology support to our industrial partners to help them adopt/modify research results to their needs and products, facilitate pilot and full-scale testing for verification
- Assist them with finding new application sites (i.e., monitoring stations, treatment plants) through our networks

