PFAS in Canadian Sludge Treatment and Biosolids

Anh Pham, Wayne Parker, and Ali Can Ozelcaglayan

Department of Civil & Environmental Engineering University of Waterloo

PFAS - Emerging Contaminants: Why Now?

PFAS - Emerging Contaminants: Why Now?

1965-1975

PFAS analysis is expensive!

• Expensive: LC/MS/MS, SPE extraction, isotopically labeled internal standards

PFAS analysis is expensive!

- Expensive: LC/MS/MS, SPE extraction, isotopically labeled internal standards
- Many compounds (20 40)

PFAS analysis is expensive!

- Expensive: LC/MS/MS, SPE extraction, isotopically labeled internal standards
- Many compounds (20 40)
- 12,000+ PFAS compounds: targeted *versus* non-targeted analysis

PFAS analysis is expensive!

- Expensive: LC/MS/MS, SPE extraction, isotopically labeled internal standards
- Many compounds (20 40)
- 12,000+ PFAS compounds: targeted *versus* non-targeted analysis
- Labor-intensive

PFAS analytical methods are still evolving

PFAS analytical methods are still evolving

PFAS analytical methods are still evolving

Since 2020, we have been studying PFAS fate in wastewater sludge handling system

High Solids Samples

Environmental Science Water Research & Technology

 PAPER
 View Article Online View Journal |View Issue

 Image: Check for updates
 The analysis of per- and polyfluoroalkyl substances in wastewater sludges and biosolids:

 Cite this: Environ. Sci: Water Res. Technol., 2023, 9, 794
 The analysis of per- and polyfluoroalkyl substances in wastewater sludges and biosolids:

Ali Can Ozelcaglayan, Wayne J. Parker* and Anh Le-Tuan Pham 🔟*

Low Solids Samples

The Fate of 15 PFAS in Two Full-Scale Wastewater Sludge Handling Systems: An Interstage Mass Balance Analysis

Journal:	ACS ES&T Water
Manuscript ID	ew-2023-007035
Manuscript Type:	Article
Date Submitted by the Author:	10-Nov-2023
Complete List of Authors:	Ozelcaglayan, Ali; University of Waterloo, Civil and Environmental Engineering Pham, Anh; University of Waterloo, Civil and Environmental Engineering Parker, Wayne; University of Waterloo, Civil Engineering

Since 2020, we have been studying PFAS fate in wastewater sludge handling system

Since 2020, we have been studying PFAS fate in wastewater sludge handling system

- WRRF-A & WRRF-B
- Daily and weekly sample collection over 3-4 weeks

 \rightarrow 24 PFAS concentrations (ng/L & μ g/kg)

 \rightarrow TS, TSS, VS, VSS, pH

- Flow data provided by plant operators
- <u>PFAS concentration</u> & <u>flow data</u> & <u>TS</u> \rightarrow PFAS mass flows

PFAS Concentrations in Biosolids

PFAS Concentrations in Biosolids

PFAS Mass Flow in Liquid-Solid Separation & Sludge Blending

PFAS Mass Flow in Liquid-Solid Separation & Sludge Blending

PFAS Mass Flow in Liquid-Solid Separation & Sludge Blending

PFAS Mass Flow in Fermentation

PFAS Mass Flow in Anaerobic Digestors

PFAS Mass Flow in Anaerobic Digestors

PFAS Fate in Wastewater Sludge Handling System

PFAS Fate in Wastewater Sludge Handling System

PFAS Fate in Wastewater Sludge Handling System

- Solid-liquid separation and sludge blending do not affect PFAS mass flow
- Precursor degradation and PFAA formation in anaerobic digestors (AD)

 \rightarrow overall increase in PFAS mass flow

- The extent of PFAS degradation and formation in AD depends on SRT
- Long-chain compounds exit the system via the solid (i.e., cake) stream
- Short-chain compounds are recycled back to wastewater treatment

On-going Work: PFAS Fate in Composting

On-going Work: Total Organic Fluorine (TOF) in Biosolids

Region of Waterloo

