There's more to filtration than stable operation: How knowledge about performance variations can be used to inform management of microbial risks

Dafne de Brito Cruz, Trevor J. Brown, Chao Jin, Kelsey L. Kundert, Norma J. Ruecker, Liza Ballantyne, Philip J. Schmidt, William B. Anderson, Monica B. Emelko

2023 National Water and Wastewater Conference Niagara Falls, November 13th 2023

Filtration and safe drinking water

Filtration: An inherently variable process

Filtration: an inherently variable process

Constant log-removal credits

Optimizing removal during stable operation

Table 6. Cryptosporidium and Giardia removal credits for various treatment technologies					
Treatment barrier	Crypt	<i>osporidium</i> removal	Giardia removal credit		
credit					
Conventional filtration ^a		3 log ^b	3 log ^b		
Direct filtration ^a		2.5 log ^b	2.5 log ^b		
Slow sand filtration ^a		3 log ^b	3 log ^b		
Diatomaceous earth filtration ^a		3 log ^b	3 log ^b		
Microfiltration and ultrafiltration ^a	Demo	nstration and challenge testing ^c	Demonstration and cha testing ^c	llenge	
Nanofiltration and reverse osmosis ^a	Demo	nstration and challenge testing ^{c,d}	Demonstration and cha testing ^{c,d}	llenge	
Riverbank filtration	Site-s	pecific determination ^e	Site-specific determin	ation ^e	
 ^a Credits are awarded when in compliance with the individual filter effluent turbidity specified in the Guidelines for Canadian Drinking Water Quality (Health Canada, 2012d) ^b Values from Health Canada, 2012d. ^c Removal efficiency demonstrated through challenge testing and verified by direct integrity testing. ^d NF/RO membranes do not currently come equipped with direct integrity testing capability – acceptable verification methods should be approved by the jurisdiction having authority. 					

^e As required by the jurisdiction having authority.

Plants have multiple filters

Source: Water STP

Objectives

Evaluate how temporal variability in pathogen removal performance affects the combined, plant-scale performance of filters operated in parallel

Investigate the effects of alternative design and/or operational strategies to improve overall filtration performance

Methods – Filter cycle

Filter cycle variability – Cryptosporidium oocysts removal

Filter cycle phase	Duration (h)	Log-reduction
Ripening	0.5	4.7
Stable operation	60	5.3
Early breakthrough	1	2.8
Late breakthrough	0.5	1.2
Backwash	0.5	-

Based on Huck et al., 2001

https://www.waterrf.org/research/projects/filter-operation-effects-pathogen-passage

Methods - Performance assessment Filter 1 $LR_{1,T}$ Effective log-reduction Filter 2 $LR_{2,T}$ (Schmidt et al., 2020) Influent Filter 3 $LR_{3,T}$ https://doi.org/10.1016/j.watres.2020.115702 Effluent LR_{combined,T} **System** ••• performance over a $LR_{n,T}$ Filter n TINE full filter cycle LR_{overall} Filter 1 $LR_{1,t}$ Filter2 $LR_{2,t}$. Influent Filter 3 LR_{3,t} Effluent Instantaneous combined *LR*_{combined,t} performance of ••• LR_{n,t} Filter n several filters WATER FLOW

Time (h)

Number of parallel filters

Same overall performance

Increasing number of filters attenuates variability

Filter performance during stable operation

Negligible improvement on average if removal_{MIN} << removal_{MAX}

Filter performance during stable operation

Pathogen passage in the base case

Phase	Pathogen passage (%)
Ripening	0.03
Stable operation	0.90
Early breakthrough	4.74
Late breakthrough	94.33

If it is cold inside, don't close your window if your door is open!

Duration of breakthrough

Reducing breakthrough leads to substantial increases in performance

Monitoring individual filter effluent

Timely backwashing

Time (h)

Coagulation

Pathogen log-reduction

Scenario	R	SO	EB
No coagulation	2.1	2.1	2.1
Sub-optimal coagulation	3.1	3.1	2.8
Optimal coagulation	4.7	5.3	2.8
R: ripening / SO: stable operation / EB: early breakthrough			
Coagulation is			
important to plant-scale			
filtration performance			

Pathogen passage in the base case

Filter-to-waste operation

Phase	Pathogen passage (%)
R	0.03
SO	0.90
EB	4.74
LB	94.33

R: ripening / SO: stable operation / EB: early breakthrough / LB: late breakthrough

Beneficial if removal during ripening <<< overall removal during the remainder of the filter cycle

Conclusions

- There is more to filtration than stable operation
- Filter cycle variability can be attenuated with more filters
- Individual filter monitoring, timely backwashing and optimal coagulation are important to plant-scale filtration performance
- Know your system!

For more...

Received: 17 May 2023 Revised: 8 September 2023

DOI: 10.1002/aws2.1357

Accepted: 20 September 2023

ORIGINAL RESEARCH

Filter operation effects on plant-scale microbial risk: **Opportunities for enhanced treatment performance**

Dafne de Brito Cruz ¹ 🕼	Trevor J. Brown ^{1,2}	Chao Jin ^{1,3} 💿 🛛
Kelsey L. Kundert ⁴	Norma J. Ruecker ⁴ 🗅 🛛	Liza Ballantyne ⁵ 🗅 🛛
Philip J. Schmidt ¹ 💿 🛛	William B. Anderson ¹	Monica B. Emelko ¹ 💿

¹Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada ²Region of Waterloo, Waterloo, Ontario, Canada ³School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, China ⁴The City of Calgary, Calgary, Alberta, Canada ⁵Toronto Water, Toronto, Ontario, Canada

- Number of filters
- Filter performance during stable operation
- Duration of early/late breakthrough
- Coagulation
- Filter-to-waste operation
- Duration of stable operation
- Filter performance during breakthrough
- Backwashing staggering

Thank you

Dafne de Brito Cruz ddbcruz@uwaterloo.ca