Wastewater Treatment Digital Twins:

Data Quality, Real-Time Simulation & Operational Decision-Support

John B. Copp, Ph.D. Primodal Inc., Hamilton, ON, Canada

Primodal

- ➤ Based in Hamilton, ON. (est. 2005)
- Data-Driven Solutions
 - Mechanistic Process Modelling Specialists
 - Process Engineering & Modelling, Design, Control, Uncertainty Analysis, and Data Analytics

COMMON THEME → Data Evaluation

- the need for accurate and representative data
- data analytics (quality, analysis, open data, ...)
- > PrecisionNow software suite
 - data analysis, process modelling integration
 - dDesk, dDock & dDockDT

Towards A Digital Solution

➤ How?

- Staged Approach
- Realise Benefits Each Step

Automated Process Control

- link DT to plant actuators
- adoption of DT by all disciplines

- real-time calculation of process/operational variables

On-Site Automated Data Analysis & Model-Based KPIs

- real-time data evaluation & real-time model operation
- simplified data-driven models for real-time KPI and process understanding

Process Insights, Data Understanding & Model Development

- model of process under study
- data analysis / quality assessment
- modelled control / operational procedures
- detailed system understanding

Towards A Digital Solution

➤ Today's Presentation

- Data Assets
- Process Insights
- Real-Time Model-Based Process KPIs
- Performance & Digital Twins

Automated Process Control

- link DT to plant actuators
- adoption of DT by all disciplines

Real-Time Process Optimisation

- real-time calculation of process/operational variables

On-Site Automated Data Analysis & Model-Based KPIs

- real-time data evaluation & real-time model operation
- simplified data-driven models for real-time KPI and process understanding

Process Insights, Data Understanding & Model Development

- model of process under study
- data analysis / quality assessment
- modelled control / operational procedures
- detailed system understanding

PrecisionNow Digital Solution → Why?

Data

KPIs / Actionable Outcome

Numerous Unrealised Benefits

- Risk assessments; Process insights
- Day-to-day operations; Future operations; Situational awareness

➤ Effort

- Already collecting the data
- Can be automated

PrecisionNow Digital Solution → Why?

Data

KPIs / Actionable Outcome

- ➤ Goal (irrespective of data user)
 - Improved Data Quality
 - Practical Process Understanding & Improved Operation
 - Better Decision-Making

PrecisionNow Data Analytics → How?

Data

KPIs / Actionable Outcome

> Treat Data as an Asset

- Systematic approach to the care of that data
- Realise the value contained within that data
- Develop, maintain, and update that data & its collection cost effectively
- Maximise the economic and capital value of that data over time

PrecisionNow Data Analytics → How?

Design

Collection

Maintenance

High Quality Data

KPIs / Actionable Outcome

➤ Manage Entire Data Life-Cycle

- Design,
- Commissioning, Collection,
- Maintaining, Repairing,
- Modifying, Replacing

- → What data and why is it needed?
- → Resource allocation, departments?
- → How will the data quality be assured?
- → Criteria for replacement?

Design Collection Maintenance High Quality Actionable Outcome

- Model-Based Design
 - Information maximisation
 - Controller design
 - Sensor / sampling
 - Frequency
 - Time
 - Locations

- ➤ Real-Time Evaluation
 - Data quality assessment
 - Maintenance / quality alerts
- Data-Derived Outcome
 - Digital twin
 - Data-driven KPIs
 - Process insights
 - Operational parameters

Design

Collection

➤ Model-Based Design

- Model development acts as knowledge repository
- Identification of previously unknown connections
- Process insights
- Identification of critical data gaps
- Determination of process indicators

Maintenance

➤ Real-Time Evaluation

- Near real-time calculation of data quality indicators
- Immediate data quality feedback
- Data quality alerts and maintenance signaling
- Simple and complex quality algorithms
 - Comparison/combination of data sources

High Quality Data KPIs / Actionable Outcome

➤ Data-Derived Outcomes

- Real-time process KPIs
- Digital twin output
- Operational parameters
- Risk assessment
- Situational awareness

KPIs /

Actionable

Outcome

- Automated Goal-Oriented Data Analysis
- User-Configurable Data Algorithms
- Standardised Data Analysis Approaches
- Integrated Model (data, process) Analysis
- Verifiable QA/QC

Precision Now: dDockDT

PrecisionNow[®] NWWC, November, 2023

www.primodal.com

Data Flow: dDockDT (performance twin)

Data Flow: dDockDT (digital twin)

Precision Now -> User-Configurable Data Analysis

- Drag-n-drop your data sources
- Configure your data access settings

Precision Now -> User-Configurable Data Analysis

- Drag-n-drop 100s
 of user-configurable
 data analysis
 modules, then
 connect them up
- Visualise your data analysis flow

Precision Now -> User-Configurable Visualisation

- Choose your own visualisation options
- Configure personalised dashboards

Precision**Now** \rightarrow How is this different?

User 1 (Operator)

- Data quality / Sensor status
- Risk of failure custom calculation

- Purpose-Built
 Real-Time Analyses
 - Individual
 - Shared/Not shared
 - No legacy

User 2 (Engineer)

- Longterm trends
- Controller behaviour

??

User 3 (???)

- Short-term study on data quality
- Data analysis for SOP update
- ..

Demo – Filter Assessment

Precision*Now* → Case Study 1 – Filter Assessment

Case Study → Real-Time Filter Assessment

PrecisionNow -> Case Study 2 - Risk Assessment

Data Model

- Continuously Running
- Influent Soft-Sensor

Real-Time Risk Assessment Output

- Real-Time Model Input
 - Influent Flow

- Data Model
 - Calibrated with Historical Data

PrecisionNow → Case Study 2 – Risk Assessment

Failures, Process Oddities ...

Predictive Fault Detection & Soft Sensors

Real-time soft sensors running in parallel, or alone

Sensor failure & alarm

Failures, Process Oddities ...

- Predictive Fault Detection & Soft Sensors
- Optimise and Adaptive (& Model-Based) Control Systems
 - DO, SRT, MLSS, Chemical Dosing, ...
- Flow & Mass Balances
 - Influent/Effluent, Flow splits
- ➤ Identify Maintenance Issues
 - Statistical comparison of parallel ASPs
 - DO probes, Airflows, Valves, Ammonia ...

Successful Implementation

- Includes all disciplines
- Creates incentives for all disciplines
- Incorporates existing operations
- Data quality control
- Optimises data usage
- Incorporates new data-driven operational outcomes into existing SOPs and operator work schedules

Successful Implementation – Why?

➤ Last Project

- 70% of all lab data thrown out
 - Unusable, poor quality, meta-data issues
- Sensor maintenance
 - Sensor SOPs lacking, 3rd party service provider
- Flow/Mass balances
 - Unable to balance flow and masses due to unknown QC problem
 - Information SILOs resulted in unshared data
- Wasted resources storing poor quality data

Potential for design/operation errors

Precision Now: dDockDT

Conclusion

Data Quality

- Data Quality is essential
 - You've invested in the equipment, so spending the time and money ensuring data quality will help realise the benefits
- Maintenance
 - Understanding when and how often maintenance is required saves money (avoid *ad hoc* estimates)

Conclusion

➤ Digital Twins Need Prior and Post Model Data Analysis

- Raw data analysis for proper data to the model
- Model output analysis for real-time operational efficiency

➤ Precision Now

- User-Configurable DT technology
 - data analysis & visualisation
 - data flow to/from the model
 - multiple model capabilities, scheduling, optimisation

Thank-you!

John B. Copp

Primodal Inc.
Hamilton, Ontario
copp@primodal.com