

Ontario's Draft Guidance on GUDI: A City of Guelph Case Study

City of Guelph

Water Supply Master Planning – Restoration of Existing Offline Municipal Wells

Figure ES-1: Total Projected Average Annual Day and Maximum Day Water Demands – Reference Growth Scenario

■ Projected AAD

■ Projected MDD

Restoration of the Clythe Well

- Northeast quadrant of the City
- Existing PTTW (39.3 L/s up to 3,395 m³/day
- Treatment to be added to address aesthetics:
 - Hydrogen Sulphide
 - Manganese
 - Iron

Water Well Record (1976)

Liner Installation (1999)

Geophysical Borehole Logging of Clythe Well

- Significant fracture zones
 - 28.6 mbgs
 - 44.8 to 48.0 mbgs

Clythe Well Rehabilitation and Assessment (Stantec, 2008)

Objectives related to 2001 GUDI Studies:

- Complete a detailed assessment of well condition with respect to current regulations (O.Reg 903)
- Conduct a continuous 72-hour pumping test to assess well performance and water quality

GUDI Assessment Conclusions:

- The well meets the current requirements of Ontario Regulation 903 as well as the AWWA A100 specifications for plubness and alignment
- Monitoring wells completed in overburden and Guelph formation did not respond to pumping
- Water quality meets all healthrelated Ontario Drinking Water Standards
- No evidence of surface water influence

Clythe Well Treatability Study (Gamsby and Mannerow, 2010)

- Treatment of Hydrogen Sulphide, Manganese and Iron
- Note that these are aesthetic objectives and not health-related parameters

Figure 3: Schematic and Photograph of Pilot Testing Equipment (typical for both pilot systems)

Stage 1 AVCP Hydrogeological Study (Matrix, 2023)

Objectives related to Stage 1 AVCP Studies:

- Collect key water quality data and provide a preliminary categorization of Clythe Well
- Determine data collection requirements for any operational confirmation period for the well to verify the provisional category (i.e Stage 2 AVCP)
- Evaluate potential for groundwatersurface water interactions
- Support renewal of PTTW

Well Integrity and Structural Assessment

- 2008 Stantec Feasibility study confirmed that the well met Ontario Regulation 903
 - Reaffirmed through 2022
 Geophysical logging by Lotowater
- Details of the annual seal were documented in the installation of the liner, which extended down to 26.8m bgs and is thicker than 50mm

LOWER RISK

Stage 1 AVCP

- Baseline Water Quality monitoring program
 - 5 samples for E.Coli
 - 3 samples for General Chemistry
 - 3 samples for Cryptosporidium, Giardia and PBADs
 - Continuous measurement of UV Transmittance and turbidity
- Water Level Monitoring

Stage 1 AVCP Monitoring Program

Surface Water Monitoring Program

- Upward gradient in Clythe Creek at CC-1 (upstream) and CC-2 (adjacent to Clythe Well)
- Groundwater supports baseflow in Clythe Creek at these locations

Summary of Stage 1 AVCP Results

Conclusions and Recommendations

- Continue to monitor surface and groundwater levels
- Put the well into long-term operation for a minimum of 2years
- Complete "Enhanced Monitoring Program"

Thanks to contributing Partners:

