

Hybrid Treatment Technologies for Upgrading a Lagoon-Based WWTP

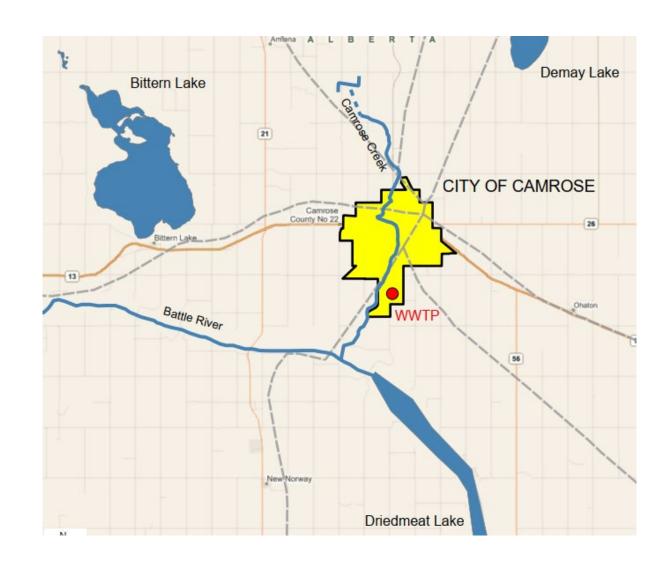
Jeremy Enarson, P.Eng.

Manager of Engineering Services

City of Camrose

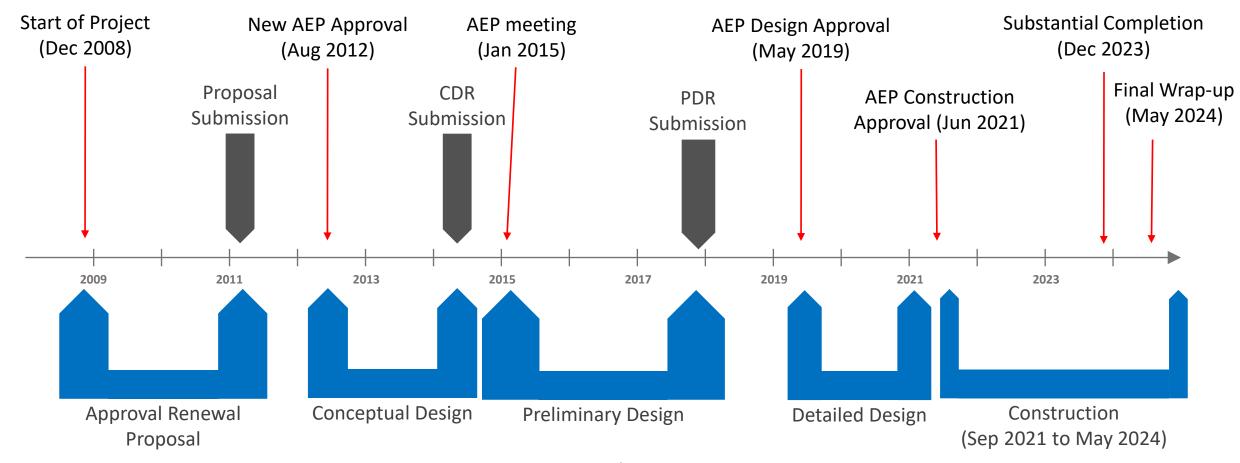
NWWC 2023

City of Camrose


- The "Rose City"
- ~1 hour SE of Edmonton, Alberta
- ~20,000 population
- 1 to 1.5% annual growth rate

Camrose WWTP

- Located at the south end of Camrose
- Currently consists of aerated lagoons (3), and treated wastewater storage lagoons (6)
- Discharge treated
 wastewater to the Battle
 River via Stoney Creek
 (spring and fall)



Camrose WWTP

Key Milestones

Stages in WWTP Design / Construction Process

Summary of Approval Requirements

Parameter	Existing Limit	New Treatment Requirement	Regulatory Authority / regulation	
cBOD	< 25 mg/L	< 20 mg/L	AB Environment & Protected Areas (AB EPA)	
TSS		< 20 mg/L	AB EPA	
NH ₃ -N, summer		< 5 mg/L	AB EPA	
NH ₃ -N, winter		< 10 mg/L	AB EPA	
NH ₃ , Un-ionized		< 1.25 mg/L	Wastewater Systems Effluent Regulations (WSER)	
Р		< 1mg/L	AB EPA	
Total residual Cl		< 0.02 mg/L	WSER	
Acute toxicity		Not acutely lethal (pass the LC-50 test)	WSER	
E. coli		< 200 CFU / 100 mL	AB EPA	

Approval Renewal Proposal (2008-2011)

- Dec 2008
 - City retained Associated Engineering (AE)
 - Approval renewal proposal, conceptual and preliminary design
- Feb 2009
 - Initial meeting with Alberta Environment (now AB EPA)
 - Consider risks to both environment, and to human health

Approval Renewal Proposal (2008-2011)

• Feb 2009 – AB EPA meeting

- Testing (spring, summer, fall 2009)
 - Wastewater and of receiving environment
 - ~100 parameters tested during three seasons
 - Review of results by AE (2009-2010)

• Submission of "Approval Renewal Proposal" – Feb 2011

- August 2012
 - AB EPA granted the City with a new 10-year approval
 - Outlined requirement to design / construct upgraded WWTP
 - Based on treatment limits outlined in 2011 Approval Renewal Proposal
 - Prelim design to be complete by 2017
 - Upgrades to be complete by end of Approval (August 2022)
- Fall 2012 Start of Conceptual Design phase of project

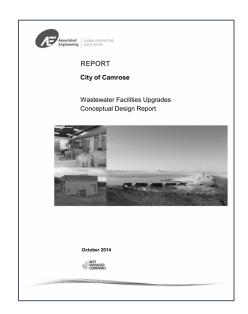
- Design considerations
 - Future design population of ~30,000 people (vs. 20,000 currently), plus flows from regional industrial user (canola crushing facility)
 - Meet or exceed treatment requirements (AB EPA / WSER)

- Major technologies considered for tertiary treatment (nutrients)
 - Fully mechanical WWTP (based on Biological Nutrient Removal)
 - Hybrid WWTP (lagoons with new mechanical processes)
 - CAPEX about 33-50% cheaper than BNR process; easier and cheaper to operate

- Benefits of hybrid option
 - Continue to use existing / expanded aerated lagoons for cBOD, TSS removal
 - Represents significant prior investment by the City
 - 30+ years of useful life remaining
- Technologies considered
 - Phosphorus removal by chemical addition / filtration
 - New mechanical processes added for ammonia removal
 - SAGR (by Nexom) Submerged Attached Growth Reactor
 - MBBR (by Veolia & others) Moving Bed Biofilm Reactor

SAGR vs. MBBR

- Submerged Attached Growth Reactor
 - Bed of buried aggregate
 - Nitrifying bacteria attached to surfaces of aggregate
 - Bacteria remains fixed as WW flows past; air (O₂) provided
- Moving Bed Biofilm Reactor
 - Plastic media floating within holding tank
 - Bacteria attached to media
 - Constantly moving within WW, due to mixing from blowers (O2)



- Conclusions
 - Fully-mechanical BNR plant not recommended (high cost, too expensive and complex to operate)
 - Both hybrid technologies (SAGR, MBBR) for ammonia removal seem promising, and should be considered further in Prelim Design
- February 2014 Conceptual Design Report finalized & submitted to AB EPA

Preliminary Design (2015-2017)

- Meeting with AB EPA January 2015
 - AB EPA concerns over hybrid approach for ammonia removal
 - Neither technology (SAGR, MBBR) approved for use in Alberta
 - SAGR developed in MB; not used at that time in Alberta
 - MBBR used in Europe and in Quebec / Ontario
 - Concerns over ability to meet more stringent requirements in the future
- City and AE address Province's concerns during Prelim Design stage

Preliminary Design (2015-2017)

Potential Future Operating Approval Limits

Parameter, (Units)	2022 Limits (Stage 1)	Potential Near Future Limits (Stage 2)	Potential Far Future Limits (Stage 3)	
TSS, cBOD ₅ , (mg/L)	20, 20	15, 15	5, 5	
NH ₃ – N (mg/L, summer, winter)	5, 10	3, 5	1, 3	
Total N (mg/L)	NA	15	5	
Total Phosphorus (mg/L)	1.0	0.5	0.10	
Fecal Coliform (CFU/100 mL)	200	20	2	

1. Comparison of SAGR vs. MBBR technologies

- Confirm "future proofing" capabilities of either technology
- Updated proposals requested from NEXOM (SAGR) and Veolia (MBBR), showing ability to meet future treatment requirements
- Multi-variable comparison of 8 identified criteria:
- Track record under cold conditions
- Low operator classification
- Total life-cycle cost
- Ease of routine maintenance
- Ease of major maintenance

- Ability to adapt to tighter future effluent requirements
- Ease of conversion to future mechanical WWTP
- Ultimate land footprint needs

Process Selection - Assessment Scorecard

Evaluation Criteria	Weight for Criteria	SAGR Score	MBBR Score	SAGR Weighted Score	MBBR Weighted Score
Track record under similar temperature conditions	10	5	4	50	40
Operator Classification	7	3	3	21	21
Ease of operation routine maintenance	9	5	4	45	36
Ease of maintenance (major)	9	3	5	27	45
Ease of adapting to tighter future effluent needs	6	4	5	24	30
Ease of conversion to future mechanical plant	4	3	5	12	20
Ultimate foot print required (set back issue)	6	3	5	18	30
Total life cycle cost to 20-year design horizon	8	5	4	40	32
Total	59	31	35	237	254

- 1. Comparison of SAGR vs. MBBR technologies
 - Suggested MBBR was preferred technology for Camrose
- 2. Bench testing of MBBR technology
 - Camrose "post-lagoon" wastewater sampled
 - Research by Dr. Robert Delatolla (University of Ottawa)
 - 1,200 L of wastewater shipped to Ottawa; tested over 2 months
 - Key finding MBBR reactor able to achieve 10 mg/L limit for ammonia at 1°C

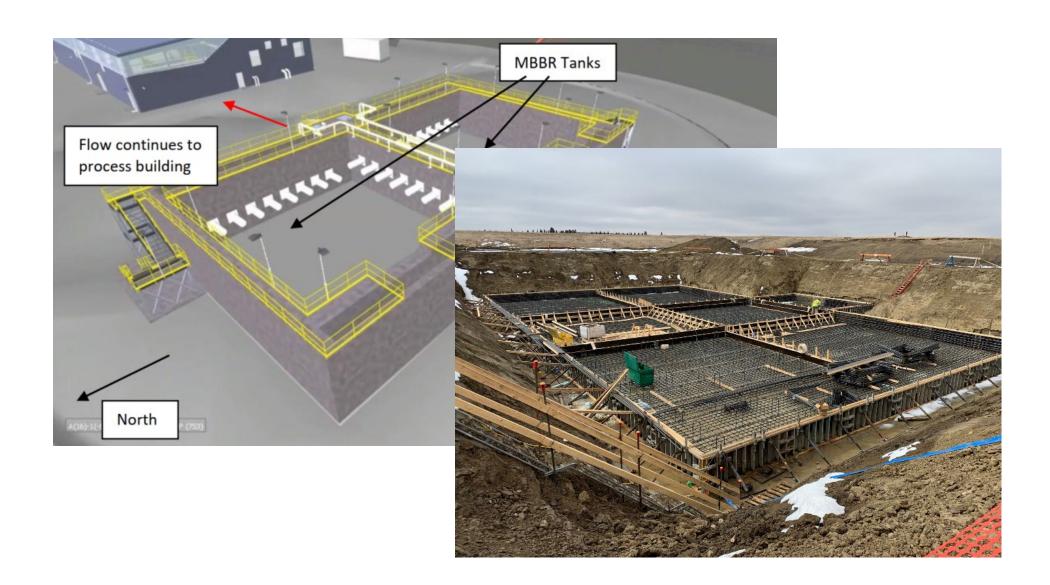
- 1. Comparison of SAGR vs. MBBR technologies
- 2. Bench testing of MBBR technology
- 3. Telephone reference checks for MBBR
 - Existing plants chosen based on size / set-up of facility, climatic conditions
 - 1 plant in Wyoming, 2 plants in Quebec
 - MBBR technology was simple and easy to operate
 - No significant operational / maintenance concerns
 - Plants consistently meeting regulatory requirements

- 1. Comparison of SAGR vs. MBBR technologies
- 2. Bench testing of MBBR technology
- 3. Reference checks for MBBR

- 4. MBBR pilot plant (Veolia)
 - Town of Neepawa, MB
 - Winter 2016/2017 pilot
 - Consistently achieved ammonia limit of < 10 mg/L at 1°C

Preliminary Design (2015-2017)

- Key conclusions from review
 - MBBR technology well suited for removal of ammonia in cold climates (as low as 1°C)
 - Works for Camrose "post-lagoon" wastewater (bench testing)
 - Can adapt to meet future treatment requirements ("modular" construction)


- Dec 2017 Prelim Design Report submitted to AB EPA
- May 2019 Approval from AB EPA to proceed with detailed design

- Detailed design -2019 to 2021
- Tender spring / summer 2021
- Construction currently underway
 - Started in Sept 2021
 - Substantial completion by Dec 2023
 - Final project cleanup by May 2024

Lessons Learned

- Long, slow approval process
 - 10+ years from start of project to approval to proceed with detailed design
- "Negotiate" with your regulator
 - Eventual buy-in from AB EPA to allow "hybrid" technology options
- Hybrid technologies should be considered
 - Leverage investment in existing assets
 - Savings of ~\$20M (CAPEX) on \$51M project
 - Savings of \$0.5M / year (OPEX), as compared to fully-mechanical WWTP

Acknowledgements

- Alberta Environment and Protected Areas
 - Pervez Sunderani, Todd Aasen
- Associated Engineering
 - Graham Lang, Michael Whalley, Jing Jin
- Dr. Robert Delatolla University of Ottawa

Hybrid Treatment Technologies for Upgrading a Lagoon-Based WWTP

Jeremy Enarson, P.Eng.
Manager of Engineering Services
City of Camrose

NWWC 2023