Effects of Denim and Polyester Fibres on Granular Sludge Reactors

Victoria Onyedibe, Rania Hamza, Roxana Suehring

Department of Civil Engineering
Department of Chemistry & Biology
Toronto Metropolitan University
November 15th, 2023

OUTLINE

- Introduction and problem statement
- Objectives
- Methodology
- Results
- Conclusions
- Q&A

Abbrevations

- MPs Microplastics.
- MFs Microfibres
- WWTPs Wastewater treatment plants
- WW- Wastewater
- AGS- Aerobic granular sludge
- CAS- Conventional activated sludge

Introduction and problem statement.

- •Lately, microplastics (MPs) have received extensive attention due to their associated environmental risks.
- •If consumption trends continue by the year 2050, there will be more plastics than fishes in the ocean.

Introduction and problem statement.

Microfibres (MFs), the dominant particles in the environment.

- MFs are pieces of tiny threadlike strands.
- Types: Natural, Synthetic, and Modified natural (denim).

- Main source: Laundry
- WWTPs are heavily impacted by MFs (concentrators).

Introduction and problem statement.

The problem with Microfibres

Objectives

- 1. Exploring the mechanisms of granulation, the formation of aerobic granules (AG) in bubble reactors with MFs.
- 2. Investigate the impact of different concentrations of denim and polyester MFs on AGS reactors.

Aerobic granular sludge (AGS)

- AGS a promising treatment technology.
- A rich consortium of tightly packed microorganisms that are formed when microbes self-immobilize and aggregate without a carrier media.
- AGS more resistant to shock loading.
- But the impact of MFs on AGS is currently unestablished

Advantages of AGS

- 3x higher settling velocity than CAS
- 20-25% reduction in operation costs than CAS
- 23-40% lower electricity consumption.
- 50-75% smaller footprint.
- Enhanced biological nutrient removal

Methodology

Methodology

MFs Preparation

4mm MFs dosed. Into the Influent

Concentrations

- 10 MFs/I
- 70 MFs/I,
- 210 MFs/I
- 1500 MFs/I

AGS Experiments

AG cultivated in 5 column-type SBR.

Synthetic WW

Std settings for optimizing granules

Tested weekly

Operated for 42 days

Analysis & Quality Control

Parameters tested: COD, TN, NH₃, P, MLSS, MLVSS, TSS

DNA extraction 16SRNA gene sequencing using Illumina

Influent concentrations of MPs

Influent concentration of MPs (mp/l)	Location	Source		Influent concentration of MPs (mp/l)	Location	source
0.5	Helsinki, Finland	(Talvitie 2017)	et al.	57.6	Kenkaveroniemi, Finland	(Lares et al. 2018)
0.7	Helsinki, Finland	(Talvitie 2017)	et al.	68	Netherlands and Germany	(Leslie et al. 2017)
0.79	South Carolina, USA	(Conley 2019)	et al.	73	Netherlands and Germany	(Leslie et al. 2017)
0.8	South Carolina, USA	(Conley 2019)	et al.	79	Changzhou, China	(Xu et al. 2019)
0.99	South Carolina, USA	(Conley 2019)	et al.	79.9	Wuhan, China	(Liu et al. 2019)
1	California, USA	(Carr et al.	2016)	91	Netherlands and Germany	(Leslie et al. 2017)
1.5	Mersin, Turkey	(Akarsu 2020)	et al.	92	Australia	(Ziajahromi et al. 2021)
2	Helsinki, Finland	(Talvitie 2017)	et al.	95	Detroit, USA	(Michielssen et al. 2016)
2	Helsinki, Finland	(Talvitie 2017)	et al.	95	Detroit, USA	(Michielssen et al. 2016)
2	Sydney, Australia	(Ziajahrom 2017)	i et al.	98	Australia	(Ziajahromi et al. 2021)
2.5	Northern, Italy	(Magni et a	al. 2019)	110	Changzhou, China	(Xu et al. 2019)
2.6	Mersin, Turkey	(Akarsu 2020)	et al.	116	Changzhou, China	(Xu et al. 2019)
3.1	Mersin, Turkey	(Akarsu 2020)	et al.	133	Detroit, USA	(Michielssen et al. 2016)
4	Jiangsu, China	(Lv et al. 2	019)	143	Changzhou, China	(Xu et al. 2019)

Methodology.

Cycle time (hr)

Duration of operation (days)

Temperature °C & pH

HRT (hr)

SBR Operating conditions (AGS Reactors)

Parameters	Values
Influent COD concentration (mg/l)	1500
Anaerobic filling (min)	40
Aeration time (min)	145
Settling time (min)	30

Acrador diric (min)	170
Settling time (min)	30
Effluent discharge (min)	15
Idla (min)	10

4

8

42

22-25 & 7.5±0.5

Emuerit discriarge (min)	13
Idle (min)	10
VER (%)	50

AGS Reactor Configuration

Methodology.

Experimental Set-up

AGS Reactors and feed tank Mixed liquor suspended solids 4000mg/l, COD:N:P 100:4.5:0.5

Methodology

5-point calibration curve for dosing

* Results and Discussion

Fibres enhance granulation

Granulation process on days 9 and 14 in SBR-0, SBR-10, SBR-70

i. Day 9

Toronto Metropolitan University

Fibres enhance granulation (SBR-1 & SBR-2).

Control reactor

SBR-1

Reactor with fibres

SBR-1 (control) 40 Days SBR-2 (fibres) 18 Days

Fibres enhanced settleability

Effects of fibres on AGS SBR-1 & SBR-2.

BIOMASS CONCENTRATION AND SETTLEABILITY SBR-1 AND SBR-2

SBR-1 Day 1 (160 mL/g), Day 18 (90 mL/g), Day 40 (64 mL/g), Day 100 (118 mL/g), Day 132 (65 mL/g) SBR-2 Day 1 (160 mL/g), Day 18 (76 mL/g), Day 40 (48 mL/g), Day 100 (90 mL/g), Day 132 (48 mL/g)

MLSS & TSS values increased with increasing fibre cond

MLSS AND TSS PROFILES FOR SBR-0, SBR-10, SBR-70, SBR-210 AND SBR-1500

Are the effects of fibres on AGS concentration dependent?

At high concentrations fibres affect COD, TN & PO₄³⁻.

Parameters	SBR-0	SBR-10	SBR-70	SBR-210	SBR-1500
COD (%)	96	96	94	93	89
TN (%)	93	93	81	75	68
NH ₃ (%)	99	99	98	98	97
PO ₄ ³⁻ (%)	98	98	92	89	80
Rem Eff %	-	100	98	99	98

So, what is the cause of this decline?

Effects of different fibre concentrations on AGS.

High diversity associated with granulation

Abundances of the microbial community at the genus level (R7 = SBR-0, R6 = SBR-10, R3 = SBR-70, R5 = SBR-210, R4 = SBR-1500, BR3= biofilm from SBR-70, BR4 = biofilm from SBR-1500 & BR5 = biofilm from SBR-210)

MF Removal Efficiency: AGS

SBR - 70 99%

SBR - 210 99%

SBR - 1500 98%

AGS 98-99%

Removal of microplastics in different treatment stages of various WWTPs in chosen Studies.

Preliminary/ Primary Treatment/ % Removal	Secondary Treatment/ % Removal	Advanced Treatment/ % Removal	Primary & Secondary Treatment/ % Removal	Primary / Secondary & Tertiary/ % Retention	Location	Source
SGGRS	AS	NA	99.9%	NA	Lysekil, Sweden	(Magnusson and Norén 2014)
SGGRS 78%	AS 20%	NA	98.41%	NA	Glasgow, UK	(Murphy et al. 2016)
SGGRSS NS	NS	GF	NS	96%	Saxony, Germany	(Mintenig et al. 2017)
SGGRS NS	AS NS	MBR,DAF,RSF,DF >95%	NS	86.1%	Finland	(Julia Talvitie, Mikola, Koistinen, et al. 2017)
SGGRS	AS	GF 20%	64%	84%	Northern Italy	(Magni et al. 2019)
SGGRS 40.7%	AS 23.7%	NA	64.4%	NA	Wuhan, China	(Liu et al. 2019)
SGGRS NS	Oxidation ditch(AS)	MBR NS	53.6%	82.1%	Wuxi, China	(Lv et al. 2019)

Conclusion.

- High fibre concentrations impact WW treatment.
- AGS exhibited high removal efficiencies.
- Increased alpha diversity
- Fibre-degrading microorganisms were observed
- It provides better treatment and nutrient removal inspite of high fibre loads

Source control and more research with the aim of developing more effective

ions are crucial.

Funding

- Queen Elizabeth II Graduate Scholarship in Science and Technology (QEII-GSST) 2021-2022, 2022-2023.
- George Vari friendship award in honor of President Lachemi 2021/2022 (Diversity).

Real AGS Plants in the USA

www.Aqua-aerobic.com

Appreciation

Appreciation

Thank you for listening

Questions?

