

BIOSTYR Duo: Smaller but mightier for efficient wastewater management

H1 - Wastewater Management

Presenters:

Christian Scott
Myriam De Ladurantaye-Noël
Daniel Lamarre

AGENDA

- Presentation of the BIOSTYR technology
- Developing BIOSTYR Duo
- BIOSTYR Duo Case-Studies

Presentation of the BIOSTYR technology

Principle of Biological Aerated Filters (BAF) - BIOSTYR

BAF technology is based on two water treatment principles:

- Biological treatment (aerobic/anoxic) using biofilm
- Physical treatment by granular filtration

Filtration media + biomass support

BIOSTYR - Facts

- Compact Footprint
- Can be installed and operated in cold weathers
- Fully automated technology:
 - Cells in filtration when required
 - Rotation of idle cells
 - Backwashes based on time or headlosses
 - Aeration varies with DO

BIOSTYR - Facts

- Biomass support: Biostyrene beads
 - Inert
 - Resistant to abrasion
 - No need for replacement
- Beads retention: Nozzle deck
 - Prefab slabs
 - Nozzles are located at the effluent
 - No clogging or fouling
 - Aesthetic and low odors

BIOSTYR: Meets stringent effluent requirements

How low can it go in a single stage?

Application	Carbon removal	Secondary nitrification	Secondary NDN (effluent recirculation)	Tertiary nitrification	Post denitrification *with COD dosage
Requirement	Primary Treatment	Primary Treatment	Primary Treatment	Carbon removal step	Nitrification step
BOD (mg/L)	10	10	10	5	-
TSS (mg/L)	10	10	10	5	-
N-NH ₄ (mg/L)	-	< 1	< 1	< 1	< 1
N-NO ₃ (mg/L)	-	-	< 10	-	< 2
TN (mg/L)	-	-	< 15	-	< 5

BIOSTYR Duo - BAF version of process intensification

BIOSTYR Duo - BAF version of process intensification

Objective: do more in existing volume

- Use «dead space»
- Increase biomass inventory
- Classic BIOSTYR can be retrofitted to Duo

Empty space for media expansion filled using heavier MBBR contracts

BIOSTYR Duo Development- Technology development

- **2011**: Pilot-scale trials in France (St-Thibault-des-Vignes)
- 2011-2015: Pilot-scale trials in Canada (Kingston, ON and Terrebonne, QC)

- 2014-2015: Pilot-scale trials in USA (Binghamton, NY)
- 2014-2016: Industrialization tests in Canada (Cornwall, ON)
- 2016: Industrialization tests in France (Seine Aval)
- 2019: First full-scale application (Binghamton, USA)
- 2019: First reference in Canada (Cataraqui Bay, ON)

Main results from industrialization test, Cornwall

Possibility to increase the biofiltration process capacity

Parameter	Maximum tested value	% increasing compared to classic BIOSTYR design	
Filtration velocity	9.9 m/h (stable operation) 11.4 m/h (peak)	+ 66%	
TSS influent loading	1.21 kg/m³/d	No gain in tested conditions	
COD total influent loading	3.03 kg/m³/d	+ 41%	
NH ₄ influent loading	0.39 kg N/m³/d	+ 31%	

Main results from industrialization test, Cornwall

More stability in initial headloss progression over 2 years

Validated in Seine-Aval;

30% headlosses reduction

BIOSTYR DUO Development- Main Conclusions

More compact

- Higher volumetric pollutant loads
- Higher hydraulic capacity

Longer filtration cycles

- MBBR carriers grow heterotrophic organisms
- Less biomass on beads = ↓ headloss (↓ BW frequency, more production)

Case Study- Cagnes-sur-Mer (France)

Project Context:

- Tight footprint available
- Close to existing infrastructures

Main Characteristics:

o 6 X BOD BIOSTYR Duo cells

Case Study- Cagnes-sur-Mer (France)

Water quality through the treatment chain

Case Study- Marne Aval (France)

Project Context:

- Existing Pre-denitrification and nitrification in single BIOSTYR cells (NDN)
- Retrofit from "classic" BIOSTYR to BIOSTYR Duo

Anoxic filter zone Anoxic filter zone Recirculation pump Raw water Backwash water

Main Characteristics:

- 14 X NDN BIOSTYR cells
- 4 X post-DN BIOSTYR cells

Case Study- Marne Aval (France)

Retrofit of BIOSTYR to BIOSTYR Duo for capacity increase

Case Study- Cataraqui Bay (Canada)

Project Context:

BOD and nitrification in a single BIOSTYR Duo cell

Main Characteristics:

o 6 X BIOSTYR Duo cells

No bead loss observed through BW in 2 years of operation

Key Takeaways

Highlights of the BIOSTYR Duo technology:

- Process & operation simplicity
- Higher treatment capacity than conventional BIOSTYR
 - Hydraulic
 - Loads
 - More compact system
- Protection against media loss
- Can be retrofitted in existing BIOSTYR filters

Thank You

