Meeting Evolving Performance Requirements for Iron and Manganese Reduction in Groundwater

Presentation to NWWC 2023

Nov 15 2023

WHO IS MAGNOR

Canadiens Fans

> Supplier

From Quebec

But we can still do good things

- Magnor specializes in the design and manufacturing of water treatment equipment
 - Drinking water
 - Process water
- Founded in 1965
- Canadian based company
 - Greater Montreal Area

- Small systems
 - 15 to 10,000 inhabitants
 - Groundwater
 - Surface Water (Small Flow)
- Contaminant Removal
 - Arsenic
 - Barium
 - Organic carbon
 - Color
 - Hardness
 - Iron
 - Fluoride

- Manganese
- Nitrate Nitrite
- Dissolved solids
- Sulfur
- Turbidity
- Uranium
- Others

GUIDELINES

Iron:

- Essential element for human nutrition Health Effects:
 - Gastrointestinal distress
 - Aesthetic Effects:
 - Discoloured water
 - Off-flavor (bitter or metallic taste)

Manganese:

- Essential element for human nutrition; found in food
- More readily absorbed from drinking water with food <u>Health Effects:</u>
 - Harmful to neurological development in children
 - Unproven carcinogen
 - Aesthetic Effects:
 - Discoloured water
 - Potential for staining

Suidelines & Treatment Objectives

> Iron:

- MAC: N/A
- Aesthetic Objectives:
- Federal:
 - 0.3 mg/L (also adopted provincially)
 - Newly proposed AO (under consideration): 0.1 mg/L

Manganese:

MAC:

- Federal:
 - 0.12 mg/L (also adopted provincially)

Aesthetic Objectives:

- Federal:
 - 0.02 mg/L
 - Recommended treatment goal: 0.015 mg/L
- Provincial:
 - Varies, but most adopting 0.02 mg/L
 - Ontario is still officially at 0.05 mg/L.
 - BC does not have an AO.

Fe and Mn Removal Treatment Technologies

OVERVIEW

	PROS	CONS
Pyrolusite	 Meets <0.02 of Mn and <0.3 of Fe even with high concentrations of each 	 Higher backwash flows than Greensand, higher water wastage No anthracite (more risks of fouling
Greensand + (CR)	 Meets <0.02 of MN and <0.3 of Fe even with high concentrations of each In dept filtration with Anthracite (less fouling risks) Continuous regeneration of media 	 More chemicals to operate (KMnO₄ + CI)

	PROS	CONS
Greensand + (CO)	 No KMnO₄ Easier to operate Lower backwash flow than Pyrolusite In dept filtration with Anthracite 	 Cannot guarantee lower than 0.05 of Mn May need to re-condition media with KMnO₄
Biological	No chemicals	 Operational risks Not suitable for all water qualities Longer to startup
Ion Exchange Resins (Softeners)	 One system for Hardness, Fe and Mn 	 No hardness in treated water OR bypass (Fe/Mn residuals) Not efficient with high concentrations Some regulatory limitations Risks of fouling

Section 2 Treatment Technologies

- Others (rarely used in GW for Fe and Mn)
 - Membrane
 - Needs pre-treatment
 - Can potentially treat colloidal iron
 - Multimedia Filter (Sand Anthracite)
 - Will only eliminate particles of Fe and Mn over 7 microns nominal
 - Will not treat ionised Fe / Mn
 - Sequestration
 - Temporary solution for low levels of Fe and Mn

Problematic #1

ACHIEVING MN <0.02 MG/L

What is the problem?

- Built-in resistance to treatment
 - Manganese levels fluctuate from source to source
 - Historical compliance
 - Lack of data
- Some traditional technologies cannot address sufficient removal
 - No previous treatment
 - Sequestrants cannot reduce to 0.02 mg/L since overall Mn content is not reduced

Traditional Approaches that will work:

- Pyrolusite: Can achieve 0.02 mg/L or lower at the cost of higher backwash flows and volume – double than what is required for Greensand
- Greensand/Greensand Plus: Will effectively reach 0.02 mg/L or less using sodium hypochlorite and potassium permanganate for oxidation and continuous regeneration of the media

Resistance to Potassium Permanganate

- Additional chemical
- > CAPEX, OPEX
- Additional point of maintenance
- Difficult and even unpleasant to manipulate

Options Moving Forward when using Greensand

- > 1. Greensand in catalytic mode (CO)
 - Guaranteed to achieve 0.05 mg/L
 - May achieve 0.02 mg/L but performance may degrade over time
 - Has worked on a pilot scale but long term data at full scale is hard to find.

	Raw Water (Avg)	Treated Water Pilot (Avg)	Treated Water (Current Treatment)
Mn (mg/L)	~0.47	0.000 to 0.007	0.000 to <u>0.036</u>

Options Moving Forward

- > 2. Greensand in CO Mode with re-conditioning
 - Will require periodic media re-conditioning through permanganate soaking.
 - Required frequency for re-conditioning cannot be guaranteed
- 3. Greensand in continuous regeneration mode (CR)
 - Can guarantee performance
 - The media manufacturer will only guarantee 0.05 even with permanganate, but Magnor will guarantee 0.02
 - Making provisions for future use if necessary

Biological?

Problematic #2

COLLOIDAL IRON REMOVAL

What is the problem?

Service Science Problematic #2 – Colloidal Iron

- Particulate iron too small to be filtered
 - Very small
 - Can be smaller than 0.1 microns
 - Causes turbidity
 - Can exceed AO of 0.3 mg/L
 - Could be already oxidized in the water or not
- Could also be organically bound iron hard to oxidize
 - Hypothesis
- Rarely seen in GW
 - But always a risk/uncertainty on Fe removal projects
 - More risk in surface and GUDI water
 - Magnor: 5 cases in 15+ years (4 GW, 1 surface)

- > 3 pilot studies + 1 at scale situation
 - Summary of all our findings
 - Details and solutions from our last pilot study

Service Science Problematic #2 – Colloidal Iron

- Summary of what we tried
 - Greensand
 - Particles too small
 - Fe residual too high
 - Doesn't work even with CI + KMnO4 + Contact Time + pH corrections
 - Cartridge filters
 - Particles are too small
 - Membrane
 - Side pilot by others
 - Effective but costly
 - Other problematics

Service Problematic #2 – Colloidal Iron

- Summary of what we tried
 - Ion Exchange
 - Cationic Ion Exchange Resins (Softener)
 - Works for Ionised Fe
 - ✓ Doesn't work for Oxidized Fe
 - Removes all hardness
 - Can foul the resin
 - Anionic Ion Exchange Resins
 - Performed for 1 day
 - Only works with organically bound iron
 - Would require to regenerate too frequently
 - Long term performance uncertain
 - Can foul the resin
 - Magnor's Colloidal Iron Removal System (CIRS)
 - In final approval

Service Science Problematic #2 – Colloidal Iron

- At Scale Project (Northern Quebec)
 - A well that had no Fe treatment issue
 - Another well was added
 - Fe AO of 0.3mg/L not met
 - After multiple interventions, we realized it probably was colloidal iron

Service Science Problematic #2 – Colloidal Iron

- Pilot #4 Most complete approach
 - Greensand CO Mode
 - Greensand CR Mode
 - pH Corrections
 - Contact Time
 - Ion Exchange Resins
- New approach
 - Along with chlorine and KMnO4, add Magnor's CIRS, a new dosing system before the Greensand
 - The objective is to increase the size of particles
 - Promising results

Results

Greensand CO Mode with/without pH correction (current treatment

	Raw Water (Avg)	Treated Water (Avg)
Fe (mg/L)	0.59	0.26

Observations

- ~50% of Iron is removed
- Lower pH is better, but doesn't solve the problem

Results

Greensand CR Mode without pH correction

– With KMnO4 + Chlorine

	Raw Water (Avg)	Treated Water (Avg)
Fe (mg/L)	0.55	0.30

Observations

- ~50% of Iron is removed
- Lower pH is better, but doesn't solve the problem
- After tests with paper filters, iron is smaller than 0.1 micron

Service Problematic #2 – Colloidal Iron

Results

Greensand CR Mode

- Without pH correction
- With KMnO4 + Chlorine
- Wit 20 min contact time

	Raw Water (Avg)	Treated Water (Avg)
Fe (mg/L)	0.65	0.4

Observations

- The contact time doesn't improve the performance

Results

Cationic Ion Exchange Resin (before Greensand)

	Raw Water (Avg)	Treated Water (Avg)
Fe (mg/L)	0.55	0.04

- Observations
 - Iron is removed

<u>BUT</u>

- All hardness is removed, not recommended
- Risk of resin fouling

Service Problematic #2 – Colloidal Iron

Results

 Cationic Ion Exchange Resin (as polisher after Greensand)

	Fe (Raw Water)	Fe (After GS)	Fe (After Resin)
Sample 1 (mg/L)	N/A	0.51	0.40
Sample 2 (mg/L)	N/A	0.14	0.08
Sample 3 (mg/L)	0.64	0.25	0.19
Sample 4 (mg/L)	0.70	0.10	0.09

Observations

- Between 10% and 42% of iron is removed after polishing
- Iron is oxidized and mainly goes through the resin

Results

Greensand CR Mode + Magnor's CIRS

– With KMnO4 + Chlorine

	Fe (Raw Water)	Fe (After GS)
Sample 1 (mg/L)	0.76	0.03
Sample 3 (mg/L)	0.74	0.02
Sample 5 (mg/L)	0.75	0.00

Observations

- Iron is almost entirely removed using Magnor's CIRS
- Tried different dosing level, optimization is needed
- None of the problematics of resins

Next Steps

Get regulatory approval

Test at full scale

- Test on other water types
 - Surface water
 - Consistent performance on GW

Contact Information

- Rick Sen, P. Eng., Associate Director of Sales
 - rsen@magnor.ca
 - 450-655-1711 x680
- Karim Abouzeid, President
 - kabouzeid@magnor.ca
 - 450-655-1711 x614

1271 Ampère, Suite 102 - Boucherville, QC J4B 5Z5 T 450 655 1711 | F 450 655 5428

- Magnor specializes in the design and manufacturing of water treatment equipment
 - Drinking water
 - Process water
- Founded in 1965
- Canadian based company
 - Greater Montreal Area

- Capacity to handle various project sizes
 - <5 usgpm to >3 000 usgpm
- Complete staff to serve your needs
 - Engineers
 - Designers
 - Project Manager
 - Chemists
 - Service technicians
 - Assemblers-fitters

- Small systems
 - 15 to 10,000 inhabitants
 - Groundwater
 - Surface Water (Small Flow)
- Contaminant Removal
 - Arsenic
 - Barium
 - Organic carbon
 - Color
 - Hardness
 - Iron
 - Fluoride

- Manganese
- Nitrate Nitrite
- Dissolved solids
- Sulfur
- Turbidity
- Uranium
- Others

- Drinking water
 - Municipalities
 - Workers' camp
 - Industries not supplied with water by the municipality
 - Tourism and recreational industry
- Process water
 - Using water in their processes
 - Using water in their product (food)
 - pH neutralization

- Water Softeners
- Pressure Filters
 - Anthracite
 - Sand
 - Specialized Media
- Activated Carbon Filters
- Greensand Filters
- Ion Exchangers
- Biological filtration

Durable, custom system

- Painted steel tank
- Actuated valve
- Control panel

Fiberglass systems:

- Fiberglass tank
- Integrated control valve

- Control & Injection Systems
 - Chlorination
 - pH regulation
 - Coagulants
- Ultraviolet Systems
- Membrane Systems
- Preassembled in Container

Peace of Mind

for your water treatment projects

Long Term Support

Personalized Service

Guaranteed Performance

- Local Service Across Canada
 - Start-up and Commissioning
 - Field testing
 - Preventive Maintenance
 - Repair and Refacing
 - Training

