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I
Source (raw) drinking water reservoirs

* Critical for uninterrupted supply of drinking water

* Snowpack storage serves ~2 billion people globally
* Typically managed for quantity

* Management for raw water quality?
* Water quality & treatability impacted by
* Natural factors

* Anthropogenic factors
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Algal (cyanobacterial) blooms and reserv0|rs
* High densities of cells challenge DWTP:

* Increase: raw water turbidity, coagulant demand, settling time

Clog filters, decrease filter run time

May interfere with disinfection

Produce cyanotoxins

Produce taste and odour compounds
* One of the biggest threats to source water quality
 Toledo, Ohio (2014)

* Microcystin LR in finished water

* > 500,000 customers without water

 Halifax, Nova Scotia (2021)

* > 9,000 customers without water
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Blue-green algae confirmed in Grand Lake
People are urged not to drink the water or swim in it

CBC News - Posted: Jun 15, 2021 3:26 PM AT | Last Updated: June 15




Phosphorus and algal proliferation

» Key limiting nutrient for algal growth in freshwater

« Commonly cited threshold for eutrophication: 30 pg TP L™
e TP = total dissolved P + total particulate P

Operational Definition m Phosphorus Type Bioavailability

Nucleic acids

Total Dissolved Phosphorus Organic Libid Requires processing
pids
(< 0.45 um)
Inorganic Soluble reactive phosphate (SRP) Readily
Organic Detritus Not-readily available

Total Particulate Phosphorus
(> 0.45 um)

_ Non-Apatite Phosphorus Requires processing

Apatite Phosphorus Not-readily available
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e
External loading of fine sediment

* Fine sediment: primary vector for P transport

* Landscape disturbances — sediment erosion
* Anthropogenic (urban development, agriculture practices)

e Natural, further exacerbated by climate change

* Watershed scale reductions attempted
* Enhanced agricultural practices
* Wastewater treatment plant upgrades
* Riparian buffers

 Wetland construction
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Internal loading within the reservoir

* Suspended and deposited sediment can
adsorb & desorb (sorb) P

* Primary producers can quickly utilize P
desorbed from sediment

Adsorption

 Factors influencing phosphorus sorption:

* Equilibrium phosphorus concentration (EPC )

 Redox conditions

IDsorbed (Ilg g-l)

* Sediment grain size

Desorption

* Sediment geochemistry

opH

* Decreasing EPC, reduces the amount of P, ucous (HE L)
P release to the raw water column
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I
Proactive reservoir management approaches

for mitigating algal threats

* Primary focus on sediment loading

* Decrease light availability

g ol e

* Mechanical mixing / bubblers
* Increase sediment oxidation
* Sediment dredging

* Chemical coagulant addition

* New York City, turbidity control
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Objectives

1. Assess sediment characteristics to determine likelihood for P desorption
Describe P load potential to the reservoir from the fine sediment

Evaluate the P release potential of fine sediment

> W N

Evaluate possible management strategies at bench-scale for minimizing algal
proliferation

I.  Chemical coagulant addition for P sequestration

II.  Combination of reservoir dredging and coagulant addition for P sequestration




Study Background

e Waterloo, Ontario
* Urban and agricultural impact

* Sediment physical and geochemical traits
support P release
1. Sediment predominantly fine grained

* Dy, <64 pmin each cell

2. Sediments with P binding metal oxide fractions higher in
cells3and 4

* Al, Mn, Fe, and chlorite (NAIP associated)

Highly anoxic sediment: confirmed by ORP analysis

4. Particulate P concentrations higher than other reported
source water reservoirs
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Study Background

 Commonly cited threshold for eutrophication
30pug TP LY

* Raw Water historical data supports P release

* Historical TP intake data ranges from
20—-200 pg P LY

e Factors underscore the need for fine sediment and
water quality management




I
Cell #1: P desorption from fine sediment

Introduction

Objectives
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Cell #1: P desorption from fine sediment

* EPC, =271 ugPL?
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e
Cell #1: P desorption from fine sediment

* EPC, =271 ugPL?

e Raw water [TP] range 20—-200 pg P L™
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Cell #1: P desorption from fine sediment

* EPC, =271 ugPL? 80
60

e Raw water [TP] range 20—-200 pg P L™

-1
sediment

* Sediment desorbs 5—-25ugPg

* P availability for primary producers

108-200,308 490,300 600

=0 mg/L (EPC = 271 pg/L)
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* Reservoir sediment & water quality
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coagulants
* Alum, PACI, and FeCI3 coagulants added 80
to reduce EPC, 60
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coagulants
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coagulants
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coagulants
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Dredging & coagulant addition enhance P removal
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I
Dredging & coagulant addition enhance P removal
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Conclusions

1. Sediment geochemical properties suggest potential for P desorption
2. Historical P intake data suggest significant potential for algae proliferation

3. Chemical coagulant addition to raw (untreated) water storage reservoir inflows can
sequester P and reduce bioavailability

4. Coagulant addition following reservoir dredging can reasonably sequester P

5. Engineering controls can provide viable options for managing reservoir water quality and
algae proliferation potential
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