Fine Sediment Management for Reducing Cyanobacterial Bloom Risks in Drinking Water Reservoirs

Nikolas Knezic, Micheal Stone, William B. Anderson, Kirsten M. Müller, Monica B. Emelko

NWWC – Niagara Falls, ON November 15th, 2023

Source (raw) drinking water reservoirs

- Critical for uninterrupted supply of drinking water
 - Snowpack storage serves ~2 billion people globally
 - Typically managed for quantity
 - Management for raw water quality?
- Water quality & treatability impacted by
 - Natural factors
 - Anthropogenic factors

Algal (cyanobacterial) blooms and reservoirs

- High densities of cells challenge DWTP:
 - Increase: raw water turbidity, coagulant demand, settling time
 - Clog filters, decrease filter run time
 - May interfere with disinfection
 - Produce cyanotoxins
 - Produce taste and odour compounds
- One of the biggest threats to source water quality
- Toledo, Ohio (2014)
 - Microcystin LR in finished water
 - > 500,000 customers without water
- Halifax, Nova Scotia (2021)
 - > 9,000 customers without water

Blue-green algae confirmed in Grand Lake

People are urged not to drink the water or swim in it

CBC News · Posted: Jun 15, 2021 3:26 PM AT | Last Updated: June 15

Phosphorus and algal proliferation

- Key limiting nutrient for algal growth in freshwater
- Commonly cited threshold for eutrophication: 30 μg TP L⁻¹
- TP = total dissolved P + total particulate P

Operational Definition	Fractions	Phosphorus Type	Bioavailability
Total Dissolved Phosphorus (< 0.45 μm)	Organic	Nucleic acids	Requires processing
		Lipids	
	Inorganic	Soluble reactive phosphate (SRP)	Readily
Total Particulate Phosphorus (> 0.45 μm)	Organic	Detritus	Not-readily available
	Inerganic	Non-Apatite Phosphorus	Requires processing
		Apatite Phosphorus	Not-readily available

External loading of fine sediment

- Fine sediment: primary vector for P transport
- Landscape disturbances → sediment erosion
 - Anthropogenic (urban development, agriculture practices)
 - Natural, further exacerbated by climate change
- Watershed scale reductions attempted
 - Enhanced agricultural practices
 - Wastewater treatment plant upgrades
 - Riparian buffers
 - Wetland construction

- Suspended and deposited sediment can adsorb & desorb (sorb) P
- Primary producers can quickly utilize P desorbed from sediment
- Factors influencing phosphorus sorption:
 - Equilibrium phosphorus concentration (EPC₀)
 - Redox conditions
 - Sediment grain size
 - Sediment geochemistry
 - pH
- Decreasing EPC₀ reduces the amount of P release to the raw water column

P_{aqueous} (μg L⁻¹)

- Suspended and deposited sediment can adsorb & desorb (sorb) P
- Primary producers can quickly utilize P desorbed from sediment
- Factors influencing phosphorus sorption:
 - Equilibrium phosphorus concentration (EPC₀)
 - Redox conditions
 - Sediment grain size
 - Sediment geochemistry
 - pH

Introduction

 Decreasing EPC₀ reduces the amount of P release to the raw water column

- Suspended and deposited sediment can adsorb & desorb (sorb) P
- Primary producers can quickly utilize P desorbed from sediment
- Factors influencing phosphorus sorption:
 - Equilibrium phosphorus concentration (EPC₀)
 - Redox conditions
 - Sediment grain size
 - Sediment geochemistry
 - pH
- Decreasing EPC₀ reduces the amount of P release to the raw water column

- Suspended and deposited sediment can adsorb & desorb (sorb) P
- Primary producers can quickly utilize P desorbed from sediment
- Factors influencing phosphorus sorption:
 - Equilibrium phosphorus concentration (EPC₀)
 - Redox conditions
 - Sediment grain size
 - Sediment geochemistry
 - pH
- Decreasing EPC₀ reduces the amount of P release to the raw water column

- Suspended and deposited sediment can adsorb & desorb (sorb) P
- Primary producers can quickly utilize P desorbed from sediment
- Factors influencing phosphorus sorption:
 - Equilibrium phosphorus concentration (EPC₀)
 - Redox conditions
 - Sediment grain size
 - Sediment geochemistry
 - pH
- Decreasing EPC₀ reduces the amount of P release to the raw water column

- Suspended and deposited sediment can adsorb & desorb (sorb) P
- Primary producers can quickly utilize P desorbed from sediment
- Factors influencing phosphorus sorption:
 - Equilibrium phosphorus concentration (EPC₀)
 - Redox conditions
 - Sediment grain size
 - Sediment geochemistry
 - pH
- Decreasing EPC₀ reduces the amount of P release to the raw water column

Results

Proactive reservoir management approaches for mitigating algal threats

- Primary focus on sediment loading
- Decrease light availability
- Mechanical mixing / bubblers
- Increase sediment oxidation
- Sediment dredging
- Chemical coagulant addition
 - New York City, turbidity control

Objectives

- 1. Assess sediment characteristics to determine likelihood for P desorption
- 2. Describe P load potential to the reservoir from the fine sediment
- 3. Evaluate the P release potential of fine sediment
- 4. Evaluate possible management strategies at bench-scale for minimizing algal proliferation
 - I. Chemical coagulant addition for P sequestration
 - II. Combination of reservoir dredging and coagulant addition for P sequestration

Study Background

- Waterloo, Ontario
- Urban and agricultural impact
- Sediment physical and geochemical traits support P release
 - Sediment predominantly fine grained
 - D_{80} < 64 μ m in each cell
 - Sediments with P binding metal oxide fractions higher in cells 3 and 4
 - Al, Mn, Fe, and chlorite (NAIP associated)
 - 3. Highly anoxic sediment: confirmed by ORP analysis
 - 4. Particulate P concentrations higher than other reported source water reservoirs

Conclusions

Study Background

- Commonly cited threshold for eutrophication 30 μg TP L⁻¹
- Raw Water historical data supports P release
 - Historical TP intake data ranges from $20 200 \mu g P L^{-1}$
- Factors underscore the need for fine sediment and water quality management

Conclusions

Pinitial (µg L-1)

• $EPC_0 = 271 \mu g P L^{-1}$

- $EPC_0 = 271 \mu g P L^{-1}$
- Raw water [TP] range $20 200 \mu g P L^{-1}$

Pinitial (µg L-1)

Introduction

- $EPC_0 = 271 \mu g P L^{-1}$
- Raw water [TP] range $20 200 \mu g P L^{-1}$
- Sediment desorbs $5-25~\mu g~P~g_{sediment}^{-1}$

Conclusions

- EPC₀ = 271 μ g P L⁻¹
- Raw water [TP] range 20 200 μg P L⁻¹
- Sediment desorbs 5 25 μg P g_{sediment} -1
- P availability for primary producers
- Reservoir sediment & water quality management should be considered

P sequestered with common chemical

coagulants

 Alum, PACI, and FeCI₃ coagulants added to reduce EPC₀

P sequestered with common chemical coagulants

 Alum, PACI, and FeCI₃ coagulants added to reduce EPC₀

Pinitial (µg L-1)

Results

P sequestered with common chemical coagulants

 Alum, PACI, and FeCI₃ coagulants added to reduce EPC₀

P sequestered with common chemical

coagulants

Introduction

 Alum, PACI, and FeCI₃ coagulants added to reduce EPC₀

P sequestered with common chemical

coagulants

 Alum, PACI, and FeCI₃ coagulants added to reduce EPC₀

Pinitial (µg L-1)

13

P sequestered with common chemical coagulants

 Alum, PACI, and FeCI₃ coagulants added to reduce EPC₀

Conclusions

P sequestered with common chemical

coagulants

 Alum, PACI, and FeCI₃ coagulants added to reduce EPC₀

Pinitial (µg L-1)

Results

13

P sequestered with common chemical

coagulants

- Alum, PACI, and FeCI₃ coagulants added to reduce EPC₀
- Alum (50 mg L^{-1}) rapidly reduced EPC₀ from 271 μ g P L^{-1} to 39 μ g P L^{-1}

P sequestered with common chemical coagulants

Psorbed (µg g-1

Results

 Alum, PACI, and FeCI₃ coagulants added to reduce EPC

- Alum (50 mg L⁻¹) rapidly reduced EPC₀ from 271 μ g P L⁻¹ to 39 μ g P L⁻¹
- PACI (25 mg L⁻¹) rapidly reduced EPC₀ towards target threshold 44 µg P L⁻¹

Conclusions

P sequestered with common chemical coagulants

- Alum, PACI, and FeCI₃ coagulants added to reduce EPC₀
- Alum (50 mg L^{-1}) rapidly reduced EPC₀ from 271 µg P L^{-1} to 39 µg P L^{-1}
- PACI (25 mg L⁻¹) rapidly reduced EPC₀ towards target threshold 44 μg P L⁻¹
- FeCl₃ (30 mg L⁻¹) rapidly reduced EPC₀ from 271 μ g P L⁻¹ to 11 μ g P L⁻¹
 - Low dose FeCl₃ (10 mg L⁻¹) achieved target threshold reduction 25 μg P L⁻¹

Psorbed (µg

P sequestered with common chemical coagulants

- Alum, PACI, and FeCI₃ coagulants added to reduce EPC₀
- Alum (50 mg L⁻¹) rapidly reduced EPC₀ from 271 μ g P L⁻¹ to 39 μ g P L⁻¹
- PACI (25 mg L⁻¹) rapidly reduced EPC₀ towards target threshold 44 μg P L⁻¹
- FeCl $_3$ (30 mg L $^{-1}$) rapidly reduced EPC $_0$ from 271 µg P L $^{-1}$ to 11 µg P L $^{-1}$
 - Low dose FeCl₃ (10 mg L⁻¹) achieved target threshold reduction 25 μg P L⁻¹

Pinitial (µg L-1)

Introduction

Psorbed (µg

 Sediment removed before Alum, PACI, and FeCl₃ coagulants added to minimize P (µg L-1) Pfinal Concentration

Pinitial Concentration (µg L-1)

Introduction

• Sediment removed before Alum, PACI, and FeCl₃ coagulants added to minimize P

• Sediment removed before Alum, PACI, and FeCl₃ coagulants added to minimize P

• Sediment removed before Alum, PACI, and FeCl₃ coagulants added to minimize P

(µg L-1) Pfinal Concentration

- Sediment removed before Alum, PACI,
 and FeCI₃ coagulants added to minimize P
- Alum (50 mg L⁻¹) reduced inlet [P]
 < 155 μg P L⁻¹ to below threshold

 $(\mu g L-1)$ Pfinal Concentration

- Sediment removed before Alum, PACI, and FeCI₃ coagulants added to minimize P
- Alum (50 mg L⁻¹) reduced inlet [P]
 < 155 μg P L⁻¹ to below threshold
- PACI (25 mg L⁻¹) reduced inlet [P] < 234 μg P L⁻¹ to below threshold

(µg L-1)

- Sediment removed before Alum, PACI, and FeCI₃ coagulants added to minimize P
- Alum (50 mg L⁻¹) reduced inlet [P]
 155 μg P L⁻¹ to below threshold
- PACI (25 mg L^{-1}) reduced inlet [P] < 234 μ g P L^{-1} to below threshold
- FeCl₃ (30 mg L⁻¹) reduced inlet [P] < 224 μg P L⁻¹ to below threshold
 - Low dose FeCl $_3$ (10 mg L $^{-1}$) reduced inlet [P] < 125 µg P L $^{-1}$ to below threshold

Conclusions

- 1. Sediment geochemical properties suggest potential for P desorption
- Historical P intake data suggest significant potential for algae proliferation
- Chemical coagulant addition to raw (untreated) water storage reservoir inflows can sequester P and reduce bioavailability
- Coagulant addition following reservoir dredging can reasonably sequester P
- Engineering controls can provide viable options for managing reservoir water quality and algae proliferation potential

BC Centre for Disease Control

Thank you

Nik Knezic

Nik.Knezic@uwaterloo.ca

References

Alliance for the Great Lakes. (2019, August 1). Five Years Later: Lessons From the Toledo Water Crisis. Retrieved from Alliance for the Great Lakes: https://greatlakes.org/2019/08/five-years-later-lessons-from-the-toledo-water-crisis/

Bladon, K., Emelko, M., Silins, U., & Stone, M. (2014). Wildfire and the Future of Water Supply. Environmental Science and Technology, 8936-8943.

Blevins, G. (2015, August 12). Why Did L.A. Drop 96 Million 'Shade Balls' Into Its Water? Retrieved from National Geographic: https://www.nationalgeographic.com/science/article/150812-shade-balls-los-angeles-California-drought-water-environment

CBC News. (2021, June 15). Blue-green algae confirmed in Grand Lake. Retrieved from CBC News: https://www.cbc.ca/news/canada/nova-scotia/grand-lake-water-investigation-1.6066260

Dunne, E., Culleton, N., Donnovan, G., & Harrington, R. (2005). Report: Phosphorus Retention and Sorption by Constructed Wetland Soils. Agriculture and Food Authority.

Hustins, S. (2022). *University of Waterloo*. Retrieved from Watersheds, wildfires, and water quality: Assessing impacts from the 2016 Fort McMurray tragedy: https://uwaterloo.ca/water-institute-research/issue-10/feature/watersheds-wildfires-and-water-quality-assessing-impacts

Knezic, N., Emelko, M., & Stone, M. (2020). Coagulant addition for managing sediment-associated phosphorus bioavailability to prevent cyanobacterial blooms in drinking water reservoirs . Waterloo, ON: University of Waterloo.

Pivokonsky, M., Cermakova, L., Novotna, K., Peer, P., Cajthaml, T., & Janda, V. (2018). Occurrence of microplastics in raw and treated drinking water. Science of the Total Environment, 1644-1651.

Province of Alberta. (2022, July 7). Fort McMurray Area Update. Retrieved from Province of Alberta: https://srd.web.alberta.ca/fort-mcmurray-area-update/2022-july-07

REUTERS. (2021, June 11). Climate Change. Retrieved from BBC News: https://www.bbc.com/news/world-us-canada-57436860

Stone, M., Krishnappan, B., Emelko, M., & Sillins, U. (2020). Modelling resuspension of fine bottom reservoir sediments to manage risks to drinking water treatability in a changing climate. *American Geophysical Union*. Virtual: American Geophysical Union.

Walsh, M. (2022). Fort McMurray Drinking Water Reservoir. 2022.

Withers, P., & Jarvie, H. (2008). Delivery and Cycling of Phosphorus in Rivers: A Review. Science of The Total Environment, 379-395.