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Source (raw) drinking water reservoirs
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• Critical for uninterrupted supply of drinking water

• Snowpack storage serves ~2 billion people globally

• Typically managed for quantity

• Management for raw water quality? 

• Water quality & treatability impacted by 

• Natural factors 

• Anthropogenic factors
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Algal (cyanobacterial) blooms and reservoirs
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• High densities of cells challenge DWTP:

• Increase: raw water turbidity, coagulant demand, settling time

• Clog filters, decrease filter run time

• May interfere with disinfection

• Produce cyanotoxins

• Produce taste and odour compounds

• One of the biggest threats to source water quality

• Toledo, Ohio (2014)

• Microcystin LR in finished water

• > 500,000 customers without water

• Halifax, Nova Scotia (2021)

• > 9,000 customers without water
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Phosphorus and algal proliferation
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• Key limiting nutrient for algal growth in freshwater

• Commonly cited threshold for eutrophication: 30 µg TP L-1

• TP = total dissolved P + total particulate P

Operational Definition Fractions Phosphorus Type Bioavailability

Total Dissolved Phosphorus 
(< 0.45 μm)

Organic 
Nucleic acids  

Requires processing  
Lipids

Inorganic Soluble reactive phosphate (SRP) Readily

Total Particulate Phosphorus
(> 0.45 μm)

Organic Detritus Not-readily available

Inorganic
Non-Apatite Phosphorus Requires processing

Apatite Phosphorus Not-readily available
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External loading of fine sediment
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• Fine sediment: primary vector for P transport 

• Landscape disturbances → sediment erosion

• Anthropogenic (urban development, agriculture practices)

• Natural, further exacerbated by climate change

• Watershed scale reductions attempted

• Enhanced agricultural practices

• Wastewater treatment plant upgrades

• Riparian buffers

• Wetland construction 

Introduction Objectives Approach Results Conclusions



 |

Internal loading within the reservoir
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• Suspended and deposited sediment can 
adsorb & desorb (sorb) P 

• Primary producers can quickly utilize P
desorbed from sediment

• Factors influencing phosphorus sorption:

• Equilibrium phosphorus concentration (EPC
0
)

• Redox conditions

• Sediment grain size

• Sediment geochemistry

• pH

• Decreasing EPC
0
 reduces the amount of

P release to the raw water column
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Proactive reservoir management approaches 
for mitigating algal threats
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• Primary focus on sediment loading

• Decrease light availability

• Mechanical mixing / bubblers

• Increase sediment oxidation

• Sediment dredging 

• Chemical coagulant addition

• New York City, turbidity control
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Objectives
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1. Assess sediment characteristics to determine likelihood for P desorption

2. Describe P load potential to the reservoir from the fine sediment 

3. Evaluate the P release potential of fine sediment

4. Evaluate possible management strategies at bench-scale for minimizing algal 
proliferation

I. Chemical coagulant addition for P sequestration

II. Combination of reservoir dredging and coagulant addition for P sequestration
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Study Background
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• Waterloo, Ontario

• Urban and agricultural impact

• Sediment physical and geochemical traits 
support P release

1. Sediment predominantly fine grained 

• D
80

 < 64 μm in each cell

2. Sediments with P binding metal oxide fractions higher in 
cells 3 and 4

• Al, Mn, Fe, and chlorite (NAIP associated)

3. Highly anoxic sediment: confirmed by ORP analysis

4. Particulate P concentrations higher than other reported 
source water reservoirs 

Cell 1

Cell 4
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Study Background 
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• Commonly cited threshold for eutrophication 
30 µg TP L-1 

• Raw Water historical data supports P release

• Historical TP intake data ranges from 
20 – 200 μg P L-1

• Factors underscore the need for fine sediment and 
water quality management 

Introduction Objectives Approach Results Conclusions



 |

Cell #1: P desorption from fine sediment
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Cell #1: P desorption from fine sediment
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• EPC
0
 = 271 μg P L-1
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Cell #1: P desorption from fine sediment

12

• EPC
0
 = 271 μg P L-1

• Raw water [TP] range 20 – 200 μg P L-1

• Sediment desorbs 5 – 25 μg P g
sediment

-1 

• P availability for primary producers

• Reservoir sediment & water quality 
management should be considered
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P sequestered with common chemical 
coagulants
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• PACl (25 mg L-1) reduced inlet [P] 
< 234 μg P L-1 to below threshold

• FeCl
3 

(30 mg L-1) reduced inlet [P] 
< 224 μg P L-1 to below threshold

• Low dose FeCl
3
 (10 mg L-1) reduced inlet [P] 

< 125 μg P L-1 to below threshold
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Conclusions
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1. Sediment geochemical properties suggest potential for P desorption

2. Historical P intake data suggest significant potential for algae proliferation

3. Chemical coagulant addition to raw (untreated) water storage reservoir inflows can 
sequester P and reduce bioavailability 

4. Coagulant addition following reservoir dredging can reasonably sequester P

5. Engineering controls can provide viable options for managing reservoir water quality and 
algae proliferation potential

Introduction Objectives Approach Results Conclusions
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