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climate change—Is your system ready?
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Water treatment is important!
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How do we assess public health protection through treatment?
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Guidelines for
Canadian Drinking
Water Quality

Guideline Technical Document
Turbidity

Long Term 2 Enhanced Surface Water
Treatment Rule: A Quick Reference
Guide For Schedule 2 Systems

Control of Cryprosporidium

a signifizant changs in disinfaction practice.

Bin Classification For Filtered Systems

Additional Cryptosporidium Treatment
Required

that

I
Canadian (and U.S.) Protozoan Pathogen Treatment Credits for Filtration

Cryptosporidium

Giardia removal

Microfiltration®
Ultrafiltration®

Nanofiltration and reverse
. d
0S10515s

Demonstration using
challenge testing

Demonstration using
challenge testing

Demonstration using
challenge testing

Demonstration using
challenge testing

Demonstration using
challenge testing

Demonstration using
challenge testing

Technology removal credit” credit” Virus removal credit®
Conventional filtration 3.0 log 3.0 log 2.0 log
Direct filtration 2.5 log 2.5 log 1.0 log
Slow sand filtration 3.0 log 3.0 log 2.0 log
Diatomaceous earth filtration 3.0 log 3.0 log 1.0 log

No credit®

Demonstration using
challenge testing

Demonstration using
challenge testing

® Values from U.S. EPALT2ESWTR (U.S. EPA, 2006b), p. 678.
® Values based on review of AWWA (1991): U.S. EPA (2003a): Schuler and Ghosh (1990, 1991); Nieminski and

Ongerth (1995); Patania et al. (1995): McTigue et al. (1998): Nieminski and Bellamy (2000): DeLoyde et al.
(2006): Assavasilavasukul et al. (2008).

EPA. 2003a). p. 62.

¢ Values from U.S. EPA LTIESWTR Disinfection Profiling and Benchmarking Technical Guidance Manual (U.S.

¢ Removal efficiency demonstrated through challenge testing and verified by direct integrity testing.
® Microfiltration membranes may be eligible for virus removal credit when preceded by a coagulation step.

 All surface water requires conventional filtration or
equivalent treatment...regardless of water quality!

* Filtration avoidance is possible, but not common
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Canadian (and U.S.) Protozoan Pathogen Treatment Credits for Filtration

-‘-_

Cryptosporidium Giardia removal
Technology removal credit’ credit’ Virus removal credit®
Conventional filtration 3.0 log 3.0 log 2.0 log
Direct filtration 2.5 log 2.5 log 1.0 log
Slow sand filtration 3.0 log 3.0 log 2.0 log
Diatomaceous earth filtration 3.0 log 3.0 log 1.0 log
Microfiltration® Demonstration using  Demonstration using No credit®
challenge testing challenge testing
Ultrafiltration® Demonstration using  Demonstration using Demonstration using

Nanofiltration and reverse

. d
051110515

challenge testing

Demonstration using
challenge testing

challenge testing

Demonstration using
challenge testing

challenge testing

Demonstration using
challenge testing

* Values from U.S. EPA LT2ESWTR (U.S. EPA. 2006b). p. 678.

® Values based on review of AWWA (1991): U.S. EPA (2003a): Schuler and Ghosh (1990. 1991): Nieminski and
Ongerth (1995): Patamia et al. (1995): McTigue et al. (1998). Nieminski and Bellamy (2000): DeLovde et al.
(2006): Assavasilavasukul et al. (2008).

¢ Values from U.S. EPA LTIESWTR Disinfection Profiling and Benchmarking Technical Guidance Manual (U.S.
EPA. 2003a), p. 62.

¢ Removal efficiency demonstrated through challenge testing and verified by direct integrity testing.

® Microfiltration membranes may be eligible for virus removal credit when preceded by a coagulation step.
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Canadian (and U.S.) Protozoan Pathogen Treatment Credits for Filtration
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regulatory update

BY MONICA B. EMELKO
AND PETER M. HUCK

Pilot-scale studies were conducted to determine if polystyrene microspheres are reasanable
surrogates for Cryptosperidium parvum removal by filtration. Previously reported data from
a conventional pilot plant using a high coagulant dose optimized for combined total organic
carbon and particle removal were contrasted with data from a pilot-scale, in-line filtration
plant using a low coagulant dose optimized for particle removal. The removal of oocysts
and microspheres was investigated during optimal operation as well as periods of process
challenge and ranged from 05 log to >5 logs. When data over a wide range of operating
conditions (and oocyst and microsphere remavals) were available, approximately linear
relationships were discerned (the coefficient of determination (R?] ranged from 0.74 to 0.9)

Although the exact relationship between oocystand microsphere removals by filtration was

somewhat site-specific, it was that ooeyst-sized mi are a useful ool

during filtrati studies and

Microspheres

as surrogates
for Cryptosporidium Filtration

he difficulty in accurately enumerating Cryptosporidium parvim has
made it impractical to suggest or reasonably enforce regulatory guide-
lines for this pathogen (Clancy et al, 1999; Nieminski et al, 1995). As
a result, the US Environmental Protection Agency’s Long Term 2
Enhanced Surface Water Treatment Rule (USEPA's LT2ZESWTR) allows

utilities that require additional treatment for pathogen removal/inactivation to
choose from a variety of options, including “demonstration of system perfor-
mance” (USEPA, 2000). More specifically, demonstrations of system perfor-
mange require studies that reliably quantify C. parvum log removals. Given the
cost, difficulty, and health risks associated with working with live oocysts, it
is desirable to establish a quantitatively reliable surrogate parameter for C. parvum
for use in performance demonstrations. Because it is well known that C. parvim
removal varies during the different phases of a typical filter cycle and as a
result of operational events and filtration regime (Huck et al, 2001; Patania et
al, 1995), surrogate relationships for C. parvum removal by filtration must be
established by investigating various operational conditions and filtration
regimes.

The objective of this study was to establish whether oocyst-sized polystyrene
microsphere removals are reliable quantitative surrogates for C. parvumnt oocyst
removal during filtration. To achieve this goal in a general and non-site-specific
manner, a wide range of operational conditions and more than one filtration
regime were investigated. Specifically, the study assessed the relationship between
oocyst and oocyst-sized microsphere removal by conventional and in-line filtra-

2004 @ Amrican Water Works Assuciation

94 MARCH 2008 | JOURNAL AWWA « 96:3 | PEER-REVIEWED | EMELKO ET AL
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Microspheres Used for Treatment Performance Assessment

microsphere

400X magnification

@WATER |8
STP %

Oregon State University/Flickr, CC BY-SA



https://www.flickr.com/photos/oregonstateuniversity/21282786668
http://creativecommons.org/licenses/by-sa/4.0/

Microplastics Toxicity is Emerging, Treatment is Generally Understood

h=10 n=10 h=8 n=8

Removal—Ilog,,

h=6 n=6 n=6 n=6

n=6 n=6 n=6 n=6

Dual-media Trimedia
Stable Operation

Dual-Media Trimedia
Hydraulic Step

Dual-Media Trimedia
Suboptimal Coagulation

Species Removed, Filtration Media, and Operating Period

n—number of sample pairs

regulatory update
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Climate Change Undermines Assumption of Stationarity

POLICYFOR |

CLIMATE CHANGE

Stationarity Is Dead:
Whither Water Management?

(A) Stationary and trend-stationary process
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Cryptosporidium removal by filtration is not always > 3-log

Dugan et al. (2001) | p 2tleastsome
LeChevallier et al. (1991) - non-detects
Lee etal. (2021)
Edzwald et al. (2000} : -
Assavasilavasukul et al. (2008} : >
Kelley et al. (1995) —
Mazoua & Chauveheid (2005) [ >
( | ,
(
(

Ongerth & Pecoraro (1995) .

States et al. (1997) »

Swertfeger et al. (1999) : >

Harrington et al. (2003) e

Beaudin & Laine (1998)-plant 3

Nieminski & Ongerth (1995)-full —
West et al. (1994) | -

Nieminski & Ongerth (1995)-pilot | i

Hashimoto et al. (2001) | >

Huck et al. (2001)-MWDSC :
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Cryptosporidium Removal (log;,)

How do we ensure “well-operated” filtration? \gTAIIER |11
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I
Pilot Tests: Filter Design, Operation & Monitoring Approaches

* Evaluate Cryptosporidium removal:
(1) by deep and shallow filters,
(2) at cold (<10°C) and warm (>20°C) water, and
(3) at typical (~5-10 mg/L) and zeta potential-informed (+/-5 mV of ZPC) coagulant doses (with replication)

Oocyst Suspension
(coagulated in settled water)

Chlorine Coagulant
| 1] T
T 1 _
-C-=[ -
L1 1 ‘
; Raw — = .
Lake Travelling Mixing Settling Dual Media
Ontario Screens Water Chambers Basins Filters
Pumps

Waste

WATER
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WRF Project 5110 Phase 1 Overview

: : Media depth (mm
5 | some non-detecs Filter #| Coagulant |HLR (m/h)| ID (cm) ) bth {mm) .
< 50 | inficer cuen: I' ; Anthracite GAC Sand Ceramic
|7 T : !I i? ﬂ; 1 alum 2 15 250 250
@ 2.0 . H d
N | P T
1 B |alum/PACI| 9.8-244 | 75
o " 3 | alum 4.1 15 1000 300
S DN
I IF i i - | A| PAC 9.7 15 900 300
T T Y O P PO B [alum/PAcl| 98244 | 75 450/300
iiz‘g i C| PAC 4.7 15 1500 300
S R e, . .
.| T i By 1,10 * Goal #1: Demonstrate the importance of sufficient
I T ! I!! ! - i particle destabilization for oocyst removal by filtration
e 14 i (regardless of filter design)
60 R
4': i;!i * Goal # 2: Highlight that sufficient particle destabilization
N —m T by coagulation alone does not guarantee oocyst removal
T ) : BT . . .
2l l sl : Ef II by filtration - hydraulics also play a role
E%l.c i Iil!li Ii iI fig E
0o ii” 5
Mo . Sub—optimal StabIlE Ripen.ing & WATER | 13
coagulation coagulation opearation hydraulic surge
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Physico-chemical filtration is not a size exclusion process
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Particle deposition on surfaces requires particle destabilization

@ Van der Waals Van der Waals
@ attraction attraction
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Particle destabilization is achieved by coagulation

(AM) AI(OH)3(s)
Sweep
coagulation

-2

Al(OH)>*
-3

Charge neutralization to

= Zzero zeta potential with 7]
= n -
Al {OH) 7AI(OH) 5(s)
E Restabilization zone -5
3’ (boundary changes with
—  colloid)
Adsorption
destabilization
-7
Alotal
-8

1
1
| | | [ | i

gllll

300
100

Al(OH),

30
10

Optimal sweep

Combination

1

(sweep and
adsorption)

\0:3’\Charge neutralization

to zero zeta potential
with AI(OH)sts)

|

2

4

6

8

10

pH of mixed solution

Adapted from Amirtharajah & Mills (1982) as cited in Crittenden et al. (2012)
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Alum as Al,(SO,);.14.3 H,0, mg/L
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Filtration: Sometimes called “Chemically-assisted Filtration” (CAF)
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I
Low CAF effluent turbidity does not guarantee >3-log oocyst removal

Cryptosporidium removal (log,,)

4.0

3.0

2.0

0.0

I
I
I
I
I
I
I
I
I
I
I
I
I

O No coagulation
® Insufficient coagulation
@ Sufficient coagulation

X Ripening & surge

hydraulic surge
Turbidity is sometimes insufficient for

0 . i .
ensuring “well-operated” filtration
o
® ®
° o ‘.
.~ = I. ®
° % °.° °
®0 0 o
o | o
: o ©
0.0 0'1 0.2 03

Filter effluent turbidity (NTU)

0.4

0.5
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I
WRF 5110: C. parvum removal by CAF during various operational periods

6.0
"Transition" Zone Optimal Particle
Destabilization Zone
- 5.0 »
%‘5' . [ ] )
= ° s ° o ®
© ° ° ° ° - ®e
g o 8 ° 4.0 ° %o C
[ J [}
sdc-.) 8 o °o ¢ ° : A
- ° x X X °
€ 0 . A ¥ "
S . . o o 3.0
S5  Sub-optimal Particle ° o X %
= NS o
§_ Destapilization Zone o d
o
b X
_g. 3 2.0
o
° o °
8 o 8 o 1.0
8 8 o 8
o o
0.0
-16 -14 -12 -10 -8 . -6 —4- -2 0 2 4
Zeta potential of oocyst seed suspension (mV)
o No coagulation o Coagulant dose not optimized using zeta potential
e Coagulant dose optimized using zeta potential target of around -5mV X Ripening & surge

A New experimental runs
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I
WRF 5110: Performance Comparison: Optimal Oocyst Destabilization

Destabilized oocyst
seed suspension

Coagulant | | | -2
Conventional o= ] l l xS
filtration = — oA = ’
Raw water Static
treatment pump mixer Mixing Settling
(Task 1) chambers basin
Dua
filters
Destabilized oocyst
seed suspension
Coagulant
In-line filtration g~ 1
) < —m-’- Co|Co o >
treatment Raw water Static
(TaSk 3.2) pump mixer

';5;3;._ ]
BT
B EESNES]

Dual media
fl Iters

Same experimental conditions:

* Filter configurations
(shallow/deep)
Seeding protocol

* Pilot coagulant dose

* QOocyst seed suspension ZP
(Zero point of charge £ 5 mV)

g
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Resilience in Risk Management
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Filter operation effects on plant-scale microbial risk:
Opportunities for enhanced treatment performance
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Filter 2
Filter 3

Filter 4

STP «



Resilience in Risk Management: It’s time to rethink our targets!

Removal during stable operation
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Focusing on increasing individual filter performance Time (h)
(beyond a minimum threshold) typically has a negligible impact
on plant-scale performance!
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Significant Findings & Implications to Water Industry

(1) Filter effluent turbidities of 0.3 NTU, 0.1 NTU, or lower do not ensure 3-log removal of
Cryptosporidium by CAF without optimal particle destabilization by coagulation

(2) “Well-operated” (and designed) CAF plants sufficiently optimized for particle removal
should be capable of achieving 3-log removal of Cryptosporidium oocysts... and
microplastics

(3) Zeta potential analysis is very useful for ensuring that coagulant dosing is sufficient for
achieving particle/pathogen destabilization and 3-log (or higher) removal of
Cryptosporidium, microplastics, and other colloidal particles by CAF

(4) In Toronto, post-coagulation zeta potential of ~-4 to -5 mV (or closer to the zero point of
charge) appears to indicate sufficient coagulant addition for particle destabilization
such that at least 3-log removal of oocysts is achieved by chemically-assisted filtration

WATER
@STP& 23




Significant Findings & Implications to Water Industry

(5) Treatment of particulate contaminants (e.g., microplastics) should be considered in the
broader, established mechanistic context of treatment processes.

(6) Holistic risk management approaches (e.g., plant-scale microbial risk assessment) are
essential to developing

(7) Well-operated inline filtration appears to achieve oocyst removals that are equal to or
higher than those achieved by conventional filtration

(8) Well-operated inline/direct) filtration likely deserve 3-log oocyst removal credit

(9) Increasingly variable source water quality can be expected in a changing climate. Even
in systems such as the Great Lakes! Tools for ensuring treatment process, operational
resilience, to these changes, and associated risk management will be integral to
ensuring public health protection from waterborne disease in the future
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