Mannheim WTP Optimization and Facility Plan

Region of Waterloo

Ayman Khedr, P.Eng Nicole McLellan, PhD

Mannheim Water Treatment Plant

- Commissioned in 1992; asset renewals
- Max design flow of 840 L/s; maximum operational flow is ~600 to 650 L/s
- 20 35 % of Region
 Water demand

Source: Google Maps

Project Overview

Why are we doing it?

Water Services – One of the fastest growing regions in Canada; we need to maximize our supply resources

O&M – Mannheim is the most operationally intensive plant in the Region

Asset Renewals – Aging infrastructure

Holistic Approach to evaluating the Treatment plant performance

Treatment Train

Key Information

- Treatment process is robust
- Fully redundant flow is split equally between two identical trains
- Treatment is flow paced; flow is controlled through butterfly valves
- Aging infrastructure
- pH control was implemented (H2S04) but discontinued

PROJECT SUMMARY

Project Goals

- Complete a comprehensive Performance Evaluation to identify bottlenecks
- Develop Quantitative and Qualitative key performance indicators (KPIs)
- Baseline current performance to track potential improvements over time
- Identify process upgrades and operational improvements prioritized based on impact to KPIs
 - $\circ~$ Opportunities for automation
 - Short term / low capital upgrades projects
 - $\,\circ\,$ Long term / major capital projects
- Create a 10 year facility plan to implement aforementioned projects
- GAIN OPERATOR BUY-IN**

KEY FINDINGS

Bottlenecks/ Opportunities

1. Sedimentation basins are significantly undersized

- 2. Blender flow control is critical for Mannheim Operations
- 3. Reviewing potential for pH control (peak shaving)

1. Sedimentation Basin Sizing

Sedimentation Basins Undersized

Sedimentation is a key performance limiting factor for Mannheim WTP.

RECOMMENDED PLATE SETTLER SOR VALUES

Source	SOR (m/h)	Capacity (m ³ /d)	Capacity (L/s)	Notes
10-State Standards	2.4	7,206	86	
MECP	2.5 - 5.0	15,012	180	(5 applied)
EPA	9.78	29,363	352	

Pre-Treatment

- Black box: Average; Orange box: Range
- Grey box: MWTP without Hidden Valley

 DAF is recommended for relatively high quality waters with average river turbidity <10NTU, or
 <100NTU from settled reservoirs

- No upper limit of TOC or colour for DAF processes
- Ballasted flocculation is recommended for water with highly variable water quality and maximum nonmineral turbidity >200NTU

Valade, M. T., W. C. Becker, and J. K. Edzwald. "Treatment selection guidelines for particle and NOM removal." *Journal of Water Supply: Research and Technology*—AQUA 58.6 (2009): 424-432.

Site Visits

		Typical Range				
Parameter	Mannheim	Belleville	Brantford	Union		
Temp (C)	0.5 to 25	0.5 to 32	2 3 to 29	4 to 24		
Turbidity (NTU)	5 to 15	4 to 25	2 to 200	1 to 117		
рН	7.8 to 8.5	7.4 to 8.8	7.4 to 8.5	7.25 to 8.23		
DOC (mg/L)	5 to 7	4 to 7	4 to 6	2		
Alkalinity (mg/L)	160 to 230	90 to 150	164 to 256	94		
Hardness (mg/L)	210 to 315	115 to 145	293 to 411	106		
Pre-treatment	Plate Settlers	, DAF	Ballasted Flocculation and pH control	DAF and pH control		

2.0 Blender Flow Control

Blender #1 Flow – 31-Day Trend

Side 1 Coagulant Dose – 31-day Trend

Side 1 Polymer Dose – 31-day Trend

3.0 pH control

Coagulation is pH Dependent

Inherent pH control

Chemical Dosing for pH Control

Evidence that coagulant dose is being used to provide pH control

ph Shaving

NEXT STEPS & LESSONS LEARNED

C2021-10 Mannheim 10-Year Facility Spending Plan

Expected Annual Expenditures (Millons \$CDN June 2023)

Lessons Learned

- Permitted/design flows may not accurately represent plant capacity
- Change is hard!
- Operator input is essential through out the process;
 - Site Visits
 - Workshops
 - Demonstration Study

Thank you!

- Nicole McLellan Stantec
- Dennis Mutti C3 Water
- Perry Decola Belleville
- Duane Ayres Brantford
- Rodney Bouchard Union WTP

