VOD .ai

NWWC 2023

November 13, 2023

ARTIFICIAL INTELLIGENCE IS **EVERYWHERE**

WAZE

Reduce risks, improve results

"Artificial Intelligence" (AI) is not New

- Coined at Dartmouth College in 1956
- Machines acting rationally (like most people)
- Machine Learning (ML), subset of Al, models/algorithms for improving outcomes

What is Machine Learning?

Why Machine Learning Today?

- Increased computing power
- Access to more data
 - 。 Volume
 - Variety
 - Velocity
- New research

Multiple Algorithms/Models Optimize Results

- Decision trees
- Bagging
- Boosting
- Random forest
- k-NN
- Linear regression
- Naive Bayes
- Artificial neural networks
- Logistic regression
- Relevance vector machine
- Support vector machine

- Supervised learning
- Unsupervised learning
- Deep learning
- Clustering
- Dimensionality reduction
- Structured prediction
- Anomaly detection
- Artificial neural network
- Reinforcement learning
- Human collaboration

Detect Emotions.

ML consistently detects
37 emotions from facial
expressions.

Benefits of ML

Data-driven decision making

Optimize scarce resources

Enhance outcomes

Find patterns we can't see

Autonomous vehicles

Weather forecasts

Today

Tomorrow

Next 7 Days >

12AM

2PM

6PM

.....

NETFLIX

Because you watched shows about Anti-Heroes and Moral Ambiguity >

g Female Leads :

vatched shows with Sharp Humor and Str Recommendations (Amazon, Netflix, etc.)

Because you watched shows about Dangerous Worlds and Complex Conse

SOpenAI

ChatGPT: Optimizing

Anougge Models

Generative AI Models

Coding & Debugs

Generative Al

- Fraud Detection
- Customer Experience
- Supply Chain Optimization
- Optimized Operations
- Content Creation

- Training and Development
- Risk Management
- Predictive/Proactive Maintenance
- Enhance Customer Service
- Targeted Advertising

OK...

So how is AI/ML relevant to utilities?

Do you proactively assess and manage water mains?

How do you choose which ones to

Traditional Methods to Predict Issues

CLUSTER AREAS

INTUITION

FAILURE HISTORY

PIPE AGE

MATERIAL

SOME COMBINATION

A new way to prioritize with Machine Learning

Improved Accuracy

TARGETED CAPITAL AND O&M SPEND

- Targeted Leak Detection & Monitoring
- Targeted Valve Maintenance
- Targeted Inventory
- Remaining Useful Life
- Faster Repairs to reduce risk

How does Machine Learning Work?

Make Predictions

Send Feedback as Input

How Machine Learning "Learns"

Training data*

Results: patterns & knowledge

Instead of an engineer re-writing code every time there are new data, machine learning changes that algorithm on its own. It's self-learning.

Process

DATA COLLECTION AND CLEAN UP

AIRISK ANALYSIS

PIPE RANKING

Case Studies

Case Study

Las Vegas, NV

5,000 miles of water mains

250,000 segments

Desktop Modeling had been used to prioritize decisions

Curiosity about machine learning led to a pilot with VODA.ai

COMPARING RESULTS: Within the Highest Risk 1%

Traditional Methods:

Prior Failure — found 11% of Failed Pipes

Pipe Age — found 12%

Desktop Statistical Model — ?

ML - 50%

Comparing Methods

...

...

#250K

Prior Failures Age #1 Only 11% are in Only 12% are in Likely to fail the top 1% the top 1% the top 1% to fail to fail

AI/ML

Case Study

Tucson, AZ

4,600 miles of water mains

230,000 segments

- In 2019, Tucson requested a ML pilot
- We asked for five years of data, but to withhold the most recent year (2018)
- We predicted the 2018 failures; Tucson validated the results
- Half failed for the 1st time!

AI/ML found 200% more failures than using traditional methods

50%

had no prior failures!

Machine Learning Results

- ML found 55% of the pipe failures in the top 1% of risk rankings
 - 17 of the top 18 segments failed
 - Number 18 filed 2 months later
 - 18 of the ML top 18 failed within 14 months

Looking for the Bull's Eye

Al/ML caught twice as many failures as the prior break model and 50% had never failed before

ML Assists Operations

Planning

Machine Learning Finds Lead

A powerful engine created for utilities

Appleton, Wisconsin

29,000 73 15,000

Service Confirmed Unknown Lines Lead Material

VODA.ai

Public service lines – likely lead pipes using installation year

VODA.ai

Public service lines – likely lead pipes using known & unknown material

Wastewater Results - Chile, South America

In first 500 pipes...

484 Failures!

In last 5000 pipes...

O Failures!

Wastewater Results - Chile

Events caught at top 1% of ranked segments

Comparison

	Age method	Prior breaks method	VODA.ai method
Full area (all regions)	12	245	787

3X Improvement Water Failure Predictions

Wastewater Condition Assessment

5 4 3 3 2 3 4

Wastewater Incident Predictions

Lead Pipe Finder

AI/ML Based Remaining Useful Life

RUL

- AI-RUL is calculated using AI/ML
- Understand investment needed to avoided large increases in future failures

