November 15, 2023 – Niagara Falls Convention Centre

National Water and Wastewater Conference

Extending the Life of Transmission Mains Presented by Stewart Dickson, P. Eng

Outline

- Introduction
- Transmission Main Condition Assessments
 - Challenges
 - Overview AWWA M77
 - Tools Available
 - Case Study City of Toronto Riveted Steel Watermain
- Rehabilitation
 - Case Study Town of New Tecumseth
 - Case Study City of Toronto

72_ss0072_it0137

ABOUT RVA

We're a community of thinkers, innovators, and collaborators who combine human ingenuity with technology and experience to deliver sustained outcomes that make a difference.

75 Years of Engineering Excellence in Canada

Canadian company founded in 1948 F BB

Employee owned and operated

#ONERVA

One company. One team. One-stop-shop.

Challenges

- Transmission mains are the backbone of the water distribution system
- Often lack redundancy and therefore can't be taken out of service
- High demand season is often a No Go for taking pipes offline
- Access no Maintenance Holes to get in the pipe
- Need to maintain potability often challenging to disinfect and "recommission" once it's been dewatered
- Limited as-constructed details for older systems

American Water Works Association

Table of Contents

- 1. The Benefits of Condition Assessment for Watermains
- 2. Building Support for a Condition Assessment Program
- 3. Planning a Condition Assessment Project or Program
- 4. Desktop Condition Assessment
- 5. External Corrosion Surveys
- 6. Spot Assessment
- 7. Leak Detection
- 8. Internal Remote Visual Inspection
- 9. Physical Entry Inspections
- 10. Acoustic Velocity Testing
- 11. Electromagnetic Testing Technologies
- 12. Magnetic Flux Leakage
- 13. Condition Assessment of PCCP
- 14. Hydrostatic Pressure Testing of Existing Pipes
- 15. Strategies for Economical Assessment of Low-Value Pipes
- 16. The Next Steps: Using Condition Assessment Information

Chapter 3: Planning a Condition Assessment Project

Your problem statement is going to determine how far to go

Transmission Main Condition Assessment Tools

CASE STUDY – Toronto Riveted Steel Watermains

Scope of Assessment

- Desktop study
 - TM-1: RSW Original Wall thickness
 - TM-2 : RSW Failure Mechanisms and Modes
 - TM-3 : RSW Deterioration Rates
 - TM-4 : RSW Failure Thickness
 - TM-5 : RSW Failure Predictions
- Boreholes
- Pipe Excavation and Concrete cores
- Coupon sampling (not completed)
- CCTV Inspection
- Final Report and Recommendations

CASE STUDY – Toronto Riveted Steel WM

CASE STUDY – Toronto Riveted Steel WM

Main #	Length (m)	Diameter (mm; inch)	Year installed (age in 2017) Pipe material	Inspection date	Remaining life / next inspection at age (years)	Structural assessment (risk factor; (FS))	Concrete encasement compressive strength (MPa)	Coefficient of chloride diffusion (cm2/year)	Chloride content (initial; exposed face; %)
M29	6,985	1200 mm (48")	1936 (81) Riveted steel	April 2019 & Oct 2019	115 / 112	0.5 - 0.7; (FS: 2 - 1.43)	60.8	7 x 10 ⁻²	0.0070; 0.0114
M29B	990	1350 mm (54")	1931 (86) Riveted steel	-	> 200 / 92	0.16 - 0.32; (FS: 6 - 3)	-	7.69 x 10 ⁻²	-
M18	460	1050 mm (42")	1948 (69) Riveted steel	Oct. 2019	> 200 / 73	0.44 - 0.6; (FS: 2.3 - 1.67)	36.2	-	0.1225; 0.2551
M28	732	1125 mm (45")	1950 (67) Riveted steel	-	> 200 / 73	0.32 - 0.48; (FS: 3.1 - 2.1)	-	-	-
M7	4,938	900 mm (36")	1951 (66) Welded steel. & Pit cast iron	-	> 200 / 91	0.24 - 0.36; (FS: 4.1 - 2.8)	40.9 - 57.6	3.28 x 10 ⁻² - 23.1 x 10 ⁻²	0.0115 - 0.0709; 0.0672 - 0.2228

Summary

- City had limited information on the condition of this specific type of pipe in their system
- Desktop review provided theoretical analysis on pipe design and failure mechanisms
- Collection of data for actual pipe locations allowed us to refine the analysis and provide specific data
- CCTV provided the visual pictures to ease the client's mind

A Rolls Royce it is!!

RVA

Problem and Investigations

- Existing 400mm diameter (14") HDPE DR 13.5 watermain
- Originally Installed via HDD in 2010
- Sink hole had developed near drain chamber (5 m deep)
- Pipeline deep under the river
- Watermain was drained and inspected
- Found a leaking joint in HDPE pipe (butt fusion welded)

Alternatives and Preferred Solution

- Excavate at location of leak
- Replace pipe across the river (underground or on bridge)
- Installation of internal repair sleeve
- Line a section of the pipe

Install Primus Liner (350mm diameter) across the valley (95 metres) from drain chamber to temp access shaft

Approximate

location of leak

CASE STUDY – New Tecumseth

CASE STUDY – New Tecumseth

CASE STUDY – New Tecumseth

Summary

- Condition Assessment Inspection Tools
 needed to find the leak
- Since leak was not due to pipe failure, full replacement was not required
- Pipe relatively new, therefore structurally still adequate
- PrimusLine provided an economical, non-structural solution
- Installed from drain chamber to access shaft excavated where more accessible
- Leak detected in April 2020 and pipe back together in service in October 2020

Pipeline History

- Construction completed in 1906
- Dewatered and inspected in 1978 measurements were smaller than on initial drawings
- ROV inspection completed in 2018 showed sections failing and in immediate need of rehabilitation

Rehabilitation Design

- ROV with 3D sonar survey
 - Established extent of deformation and precise tunnel profile
- Reviewed constructability challenges and options
 - Identified access shaft locations
- Reviewed hydraulics and transients
 - Confirm minimum new inner diameter
- Reviewed several options for new tunnel liner:
 - Hobas/FRP pipe
 - Shotcrete
 - Concrete pressure pipe
 - CIP concrete
 - Steel pipe with cement mortar lining Preferred

STA N 0+795.5

Summary

- Limited Condition Assessments completed on this critical main
- 2018 Inspection indicated it was failing badly and needed immediate rehabilitation
- Full Structural solution was required due to condition of tunnel
- Due to gravity nature of the pipe, hydraulics was very important
- Cement lined pipe sliplined into the horeshoe shaped watermain provided fastest, most economical solution
- Entirely completed during winter/low demand timeline

- Knowing the condition of your Transmission Mains is critical to managing your water system
- Condition Assessment is a formal process that helps you understand the state of your infrastructure
- Consult AWWA M77
- Have a problem statement in mind
- Utilize the tools available to piece the jigsaw puzzle together
- Rehabilitate your mains based on the conditions found and analysis completed

QUESTIONS?

Stewart Dickson, P.Eng. Associate Vice President and Principal R.V. Anderson Associates Ltd. sdickson@rvanderson.com