

NWWC 2024 Conference

Managing Water Losses

Optimizing Sensor Placement for Efficient Monitoring in Water Systems

4th Nov 2024

The Scale of the Problem

Environment Canada estimates that an average of 13% of water is lost in Canada

Vj g"Co gtlecp"Uqelgv{ "qh"E kkk"Gpi lpggtu"guvlo cvgu"vj cv"rquugu"lp"vj g"WUC"ctg"dgvy ggp"52/72'

Leakage Levels in European countries (2018) – Source OFWAT

Leakage Implications on Water Resource Management and Energy

Software on a Large Scale

Dubai

Sensor Deployment

hydraulic analysis group

Instrumentation Requirements

On trunk (transmission) mains, flow readings are needed at the start and end of the pipeline plus on any offtakes. Pressure readings are required every 5 miles to detect leaks of less than 1% of the pipeline flowrate.

On distribution networks, flow readings are needed at every boundary point e.g. pumping station or reservoir (level readings will also suffice). Typically one pressure logger is required every square mile to detect existing and new leaks although that depends upon the network layout, topology and hydraulics. High speed (transient) pressure data is not required.

ALM: Transducer delta exceeded threshold

10 153 153

Standalone Mode Licence file - Found and valid (96 days remain

😵 Current Alarms 🐼 Current Events

INSTRUMENTATION

WATER MANAGEMENT SYSTEM

Live Leakage Platform

hydraulic analysis group

Digital Twin & Leak Management Platform Architecture Display, Filter, Clean and Analyse Data

Hpf pi "Gzkupi "Ngcmu

hydraulic analysis group

Water Network Digital Twin – Live Hydraulic Model

Areas of Lower Than Expected Pressure

Combining Acoustic and Pressure Data

Digital Twin – Leaks Found

Burst Detection System

hydraulic analysis group

YorkshireWater

Customer Demands and Demand Patterns

Leak Locations before SMART Meter Data

Leak Locations after SMART Meter Data

All this is achievable with GPS and NBIoT Loggers as they are reliable and provide rapid data acquisition – LoraWan is also an Option. Advanced SCADA Systems are not necessary.

Integrating AI with Acoustic Data

hydraulic analysis group

AI-Powered Spectrograms: Transforming Leak Detection with Unseen Efficiency

We Create a Spectrogram from a HWM Acoustic File. Every Spectrogram Reveals a Distinct Signature: Listening to What Our Client's Pipelines Whisper, Elevating Leak Detection Analytics and Minimising False Alarms

Mains Burst

Mains Burst

Level = 13 Spread = 3 HWM Status = No Leak ML Leak Probability = 91% Level = 19 Spread = 8 HWM Status = No Leak ML Leak Probability = 86% Service Pipe Leak

Level = 10 Spread = 4 HWM Status = No Leak ML Leak Probability = 82%

Enhanced Acoustic ML in Action – Acoustic Forced Records

- 1. We carried out a forced acoustic logger record on 3 DMAs which had medium level leakage to see if anything further could be found or detected via our ML process
- 2. The sound files were fed directly in the enhanced ML model for processing and highlighted:
- 2 mains bursts raised which, in one case, the HWM loggers were not alarming
- 1 private leak in which the HWM logger was not alarming
- 15 areas across the 3 DMAs where there were rapid spinning meter noises detected. One example as provided below was in an industrial estate which had no continuous logged meters on it. The surrounding acoustic loggers were not in alarm.

Noise Type				
Metering Activity				

analysis group

DMA	Recording Time	SiteID	Noise Type	Probability 9
B607	10/04/2024 02:30:00	125007268	Metering Activity	92
B607	11/04/2024 02:30:00	125007268	Metering Activity	93
B607	10/04/2024 02:30:00	142005070	Metering Activity	98
B607	11/04/2024 02:30:00	142005070	Metering Activity	94
B607	10/04/2024 02:30:00	142005263	Metering Activity	80
B607	11/04/2024 02:30:00	142005263	Metering Activity	82
5.				
1.CA				1

- 3. A usage POI was generated on the YW Analytics Platform, for the field team to further investigate these sounds with the following outcomes:
- They were verified as unusual meter spinning noises coming from non-household users
- The meter noise is due to it being 'topped out' as there is a maximum flow the meter can read and once the flow gets above this level it flatlines with this maximum flow.
 - The meter is passing a lot more than it is reading and is the main contributor to the remaining leakage in the DMAs which has historically struggled to get below 0.25 ML/d
 - The customers in question are not being billed for their usage due to inaccurate consumption being measured from traditional metering
- Next steps are for YW to intermittently log these users to verify usage and install a continuous logged meter if required.

PRV Spectrograms vs Leak Spectrograms

0 False Positves

DMA		Confidence Level		No	ise Class		
Mult	iple selections	~	All		Le	ak	
DMA	SiteID	Recording	Date	ML Noise Class	Category	Probability %	
B581	242003266	7/10/20	24	Leak	High	93.5 %	
B581	242002111	7/10/20	24	Leak	High	98.7 %	
B581	10042018119	7/10/20	24	Leak	Mid	50.7 %	
B581	242002815	7/10/20	24	Leak	Mid	57.8%	
B586	242014467	7/10/20	24	Leak	High	76.5 %	
B586	225025451	7/10/20	24	Leak	High	82.1%	
B586	10042005605	7/10/20	24	Leak	Low	40.2%	
B586	10072083243	7/10/20	24	Leak	Low	40.4%	

Early-Stage Dashboards

New Non-Leak Profile Observed – ML Retrained

No Leak – Electricity Meter Box Noise

A previous leak prediction in both the ML (medium to high probability) and HWM Logger Alarm status with a specific profile resembling a leak has been verified as a no leak. The ML has been retrained to remove these type of profiles as leaks.

Pressure Transient Platform

Pressure Transient Monitoring and Analysis

Implementing Effective Water Loss Management Strategies

- 1. Provide clear guidance on goals and be open to new strategies and technologies
- 2. View network sensors as an asset that provides valuable insights and understanding of network performance
- 3. Many new technologies are available and a lot of them have been successfully validated in other countries so there is minimum risk of failure. At the same time, every country has different strategies for operating their network and not every solution is viable ask questions
- 4. GPRS / NBIoT loggers can be widely deployed now to provide effective information. Costly SCADA systems are not necessarily the best option
- 5. Bring all data into a centralised platform to avoid the need to continually access multiple different equipment manufacturer sites
- 6. Research the market for different solutions large multinationals look attractive and produce effective marketing but ask where their systems are permanently installed and operational. Commercial models should also include an element of performance related goals, including leakage reduction
- 7. Foster long term relationships with suppliers and expect them to set up a local office if you are prepared to invest in their product / service. Long term collaboration is essential for success
- 8. Agree realistic timescales as it can take 12+ months to generate effective water loss management strategies

hydraulic analysis group

Contact:

Glyn Addicott – Operations Director

glyn.addicott@hydraulic-analysis.com

www.hydraulic-analysis.com