Assessing the potential of Activated Bauxite Residue (ABR) to remove PFAS in the water column

Jingya Pang

MSc, Department of Civil and Environmental Engineering University of Alberta November 4. 2024

Co-authors: Huixin Qiu^{1,2}, Scott Berggren³, Maricor Arlos¹ ¹Department of Civil and Environmental Engineering, University of Alberta ²College of Food Science and Technology, Shanghai Ocean University ³GRÖN Holding Corporation

Presentation Outline

(1) Introduction

- PFAS Overview
- Novel treatment methods to PFAS
- Fate of ABR

(2) Methodology

• Experimental design

(3) Result & Discussion

(4) Conclusion & Recommendations

PFAS: perfluoroalkyl and polyfluoroalkyl substances

A group of synthetic organic compounds characterized by **at least one H substituted by F** and the presence of **other functional groups**.

PFCAs: perfluoroalkyl carboxylic acids

1 Special properties -0- -0- C-F 485 KJ/mol -PO(OR) ₂ -NH ₂ C-O 358 KJ/mol 2 Where does PFAS come from? Amphiphilicity C-C 348 KJ/mol				-соон -SO ₃ H -О-	<u>о_</u> г	195 K l/mal
2 Where does PFAS come from? Amphiphilicity C-O 358 KJ/mol C-C 348 KJ/mol Stability	1	Special properties		-0- -PO(OR) ₂	С-г	485 KJ/1101
2 Where does PFAS come from? Amphiphilicity C-C 348 KJ/mol			• -	-NH ₂	C-0	358 KJ/mol
2 Where does PFAS come from? Amphiphilicity Stability			f carbon chain	unctional	C-C	348 K I/mol
Amphiphilicity Stability				groups		
			Amphiph	ilicity		Stability

Persistent, mobile, toxic substances (PMTs)

Poorly biodegradable

2	Where does PFAS come from?	firefighting food cosmetics paints cleaning products dental floss dental floss
3	Detected everywhere	Open non-stick cookware Open and the stain resistant furniture
		water resistant clothing personal care products ammunition climbing guitar artificial rope strings turf
		BRO FRO CHE STORES

Particularly in various aquatic matrices

3 Detected everywhere

Potential risks

Ocean 0.195 – 4.925 ng/L

https://www.istockphoto.com/photo/mexica n-cenote-sinkhole-gm178370792-20525069

Groundwater 5.3 – 615 ng/L

Fresh water 0.4 – 207.59 ng/L

https://www.pexels.com/photo/clear-glasspitcher-pouring-water-on-clear-drinking-glass-3500006/

Drinking water average of 6.4 ng/L

Removal efficiency of PFAS in WWTPs

PFAS are highly recalcitrant to conventional wastewater treatment processes.

PFAS compounds	Influent conc (ng/L)	Effluent conc (ng/L)	Removal efficiency (%)	Country	Reference
∑13 PFAS	125.69	174.11	-39	Canada	(Guerra et al., 2014)
∑9 PFAS	55	94	-71	Australia	(Gallen et al., 2018)
∑12 PFAS	20.14	23.15	-15	Sweden	(Filipovic et al., 2015)
∑16 PFAS	57.95	57.93	0	China	(Zhang et al., 2013)
∑12 PFAS	4410	6640	-51	USA	(Houtz et al., 2018)
∑10 PFAS	760.2	943.45	-24	Thailand	(Kunacheva et al., 2011)
Σ20 PFAS	10-15	14-24	-60~-40	Jordan	(Shigei et al., 2020)
∑21 PFAS	49.8	214.2	-330	Spain	(Lorenzo et al., 2019)
∑18	121.95	116.79	4	Greece	(Arvaniti et al., 2012)

Existing wastewater treatment processes are insufficient in removing PFAS and may even introduce more PFAS into the water.

		Extremely bioaccumulative	
		Alzheimer's and Parkinson's diseases diseases	
		asthma diabetes	
4	Potential risks	myocardial infarction	breast milk
		decreased birth weight kidney cancer	
	NIVERSITY ALBERTA	prostate and testicular cancer	muscle tissues

Regulations on PFAS in drinking water

1987, the **Montreal Protocol** defined essential uses of fluorine, related to health, safety and the functioning of our society..

2019, the **Stockholm Convention** on Persistent Organic Pollutants added **PFOA and PFOS** to the limited/forbidden list.

Health-based guidance for PFAS concentrations in drinking water in Canada

PFAS	Abbreviation	Screen value (ng/L)	
Perfluorobutanoate	PFBA	30	
Perfluorobutane sulfonate	PFBS	15	
Perfluorohexanesulfonate	PFHxS	0.6	
Perfluoropentanoate	PFPeA	0.2	
Perfluorohexanoate	PFHxA	0.2	
Perfluoroheptanoate	PFHpA	0.2	
Perfluorononanoate	PFNA	0.02	
Fluorotelomer sulfonate	6:2 FTS	0.2	
Fluorotelomer sulfonate	8:2 FTS	0.2	

Europe: 4.4 ng/kg weekly dose of ∑PFOA, PFOS, PFNA, PFHxS, 2020, EFSA Germany: 3 g/L for lifelong PFOA and PFOS exposure 300 ng/L for PFOA and PFOS in drinking water Italy: PFOS ≤30 ng/L, PFOA ≤500 ng/L, and other PFAS ≤500 ng/L in drinking water

Cuidalina	Advisory L	Advisory Level (ng/L)		Reference Dose (ng/kg-day)	
Guidenne –	PFOA	PFOS	PFOA	PFOS	
USEPA, 2016	70	70	20	20	

Issues associated with short-chain compounds

In Canada, short-chain PFAS are the most prevalent species.

In source and drinking water, PFBA showed the highest concentration, 2.64 ng/L and 2.59 ng/L.

In WWTPs, short-chain PFAS are up to 73% of Σ 42PFAS in both influent and effluent.

Persistence (P)

Bioaccumulation potential (B)

(eco)toxicity (T)

Long-range transport potential (LRTP)

Similar persistence to the long-chain ones.

Less bioaccumulative than long-chain ones in animals and humans, but **higher uptake** into the leaves, stems, and fruit of plants

A less toxic trend except for PFHxA (a higher ecotoxicity than PFOA to aquatic species)

More mobile due to their higher solubility in water and weaker sorption to solids

Regulations on PFAS in drinking water

Health-based guidance for PFAS concentrations in drinking water in Canada

	PFAS	Abbreviation	Screen value (ng/L)	
3C	Perfluorobutanoate	PFBA	30	- 1
4C	Perfluorobutane sulfonate	PFBS	15	
6C	Perfluorohexanesulfonate	PFHxS	0.6	
4C	Perfluoropentanoate	PFPeA	0.2	
5C	Perfluorohexanoate	PFHxA	0.2	
6C	Perfluoroheptanoate	PFHpA	0.2	
8C	Perfluorononanoate	PFNA	0.02	
8C	Fluorotelomer sulfonate	6:2 FTS	0.2	
10C	Fluorotelomer sulfonate	8:2 FTS	0.2	

Adsorption as a treatment option

- Flexible, highly efficient, easy to operate, stable to noxious substances, environment sustainable, low cost;
- Can be derived from different sources;
- Produce no secondary pollution;
- Increase recovery and reuse.

Adsorption

What is bauxite residue?

Composition	Weight%
Fe ₂ O ₃	30-62
Al ₂ O ₃	10-23
SiO ₂	3-50
TiO ₂	Trace-25
Na ₂ O	2-10
CaO	0.5-8

• High alkalinity

٠

- S?
- Leaching and contamination risks

Substantial generation and storage

ABR in wastewater treatment

ABR residual management

Research Objectives

Evaluate the potential of the **activated bauxite residue (ABR) as an adsorbent material** for removing PFAS from the water column.

Characterize "virgin" and "spent" ABR (i.e., before and after applications) 2

Determine adsorption kinetics and isotherm for the removal of different PFAS substances Assess the removal efficiency of PFAS through adsorption by ABR and **compare** with powdered activated carbon (PAC).

3

General experimental design

General experimental design

PFAS substances used

	Full	name – Short (s) or Long chain (L)	Abb	Chemical Formula	MW (g/mol)
	ſ	Perfluorobutanoic – S	PFBA	$C_4HF_7O_2$	214.04
		Perfluoropentanoic – S	PFPeA	$C_5HF_9O_2$	264.05
		Perfluorohexanoic – S	PFHxA	C6HF1102	314.05
		Perfluoroheptanoic – S	PFHpA	$C_7HF_{13}O_2$	364.06
PFCA	$\left\{ \right\}$	Perfluorooctanoic – L	PFOA	$C_8HF_{15}O_2$	414.07
		Perfluorononanoic – L	PFNA	$C_9HF_{17}O_2$	464.08
		Perfluorodecanoic – L	PFDA	C ₁₀ HF ₁₉ O ₂	514.08
		Perfluoroundecanoic – L	PFUnA	$C_{11}HF_{21}O_2$	564.09
	l	Perfluorotetradecanoic – L	PFTEDA	C ₁₄ HF ₂₇ O ₂	714.11
	C	Perfluorobutanesulfonic – S	PFBS	$C_4HF_9O_3S$	300.1
PFSA	۲	6:2 Fluorotelomer Sulfonic – L	6:2 FTSA	$C_8H_5F_{13}O_3S$	428.16

Results – Surface area analysis

Sample	Surface area (m²/g)	Total pore volume (mL/g)	Pore size diameter (nm)
"virgin" ABR	25.3	0.137	2-46
"spent" ABR	25.1	0.116	2-76

- Surface area and total pore volume did not change substantially.
- Pore sizes are heterogenous.
- Mesopores dominated (2–50 nm).

- Mesopores can promote the adsorption capacity and removal efficiency of PFAS
- ✓ Access to adsorption sites is easier for long-chain PFAS.
- ✓ Larger PFAS molecules can easily get in and
- aggregate.

Results – Surface area analysis

Туре	Adsorbent	Surface area (m²/g)	Total pore volume (mL/g)	Reference
	ABR	25.3	0.137 📕	This study
	Bauxite residue A	7.96	0.0317	(0; at al. 2010)
Bauxite Residue	Bauxite residue B	6.31	0.0318	(QI et al., 2018)
	10% Bauxite Residue + 10% Clinoptilolite or 10 wt% Bentonite	61.35-77.94	0.0388-0.0729	(Mohamed et al., 2021)
	Raw bauxite Residue	20	ND	(Mangrulkar et al., 2010)
		<100 m ² /a		
		1014		

Results – Surface area analysis

Туре	Adsorbent	Surface area (m ² /g)	Total pore volume (mL/g)	Reference
	ABR	25.3	0.137	This study
	GAC	975	0.52	(Stebel et al., 2019)
	PAC from GAC of Singi Chemical	1014	ND	(Son et al., 2022)
	4 types of activated carbons	444-985	0.2435-0.5066	(Mailler et al., 2016)
Activated Carbon	GAC	895.5	ND	(Huggins et al., 2016)
	Raw Activated carbon	912	1.02	(Cheng et al., 2018)
	4 bituminous coal-based activated carbons	755-788	0.31-0.41	(Park et al., 2020)
Dischar	Granular biochar	152.3	152.3 ND	
Biochar	Maize Tassel	2.52	ND	(Omo-Okoro et al., 2020)
	Fe-BTC	1051		
	MIL-100-Fe	1237	ND	(Yang et al., 2020)
	MIL-101-Fe	1811		
Metal-organic frame	ZIF-7	14	ND	(0 + 1) + 1 = 0 = 0 = 0
	ZIF-8	1291	NU	(Unen et al., 2016)
	Uio-66-10/25/50/DF	687-1423	0.32-0.72	(Clark et al., 2019)
	Three MIL-101-(Cr)	433.16-6955	0.62-3.44	(Pala et al., 2023)

Surface element concentration

Element concentrations on the surface of ABR via XPS								
	Relative	e % atom c	oncentrat	ion	\frown			
PFAS Conc		0.1 mg/L						
ABR Dose	2 g/L	6 g/L	10 g/L	0 g/L	3 g/L			
F	4.60	2.00	2.07	1.37	57.69			
Na	20.54	20.63	21.45	22.17	2.97			
Fe	18.05	17.78	19.09	19.65	4.88			

2.17

5.10

16.86

35.46

2.21

5.31

15.50

34.36

2.31

4.73

16.18

33.60

1.11

3.01

7.88

22.46

• PFAS: 0.1 mg/L \rightarrow 100 mg/	L, %atom: $4.60\% \rightarrow 57.69\%$
--	--

Supporting that PFAS adsorbed on the surface of ABR

Ti

Са

Si

AI

2.13

4.42

15.41

34.86

Surface element concentration

PFAS: 0.1 mg/L → 100 mg/L, %atom: 4.60% → 57.69%

• Supporting that PFAS adsorbed on the surface of ABR.

Bond types on the surface of ABR

How did F interact with ABR?

F-bond types can be qualitatively analyzed using the **XPS spectra**.

ABR dosage (g/L)	PFAS concentration (mg/L)	F bond energy position (eV)	Bond Type	
0	0	ND	ND	F mainly comes from PFAS.
100	0.1	685.0 685.5	Metal bond Carbon bond	• Thermal treatment can beak C-F bond
	0.1_post_baking	685.5	Metal bond	 F might still present
3	100	688.93	Carbon bond	-

F might be interacting with other metallic elements on the surface

Preliminary investigation on dosage and period

ous periods

Preliminary investigation on dosage and period

Long-chain PFAS compounds achieved nearly 100% removal.

- Stronger electrostatic interactions
- Stronger hydrophobic interactions
- Higher molecular weight (MW)
- Preference to form molecular/colloidal aggregates

Various periods

Preliminary investigation on dosage and period

All were between 80 and 90%.

Either short- (1h) or long-term (24h) was suitable for long-chain PFAS.

PFBA may desorb from ABR as time went by.

PFAS adsorption kinetics with ABR

PFAS adsorption kinetics with ABR

DEAC compound		Pseudo First Order		P	seudo Second Order	
PFAS compound -	K ₁ (/min)	q _e (µg/g)	R ²	K ₂ (µg/g/min)	q _e (µg/g)	R ²
PFPeA	5.484	0.136	0.965	0.807	1.147	0.995
PFHxA	3.239	0.979	0.983	0.228	1.012	0.999
PFOA	0.28	1.800	0.984	1.747	1.802	1
PFNA	0.063	1.990	0.838	5.691	1.992	1
PFBS	8.171	1.599	0.981	0.065	1.638	0.995

• The rate-limiting step is chemisorption.

• Specific bond formation likely happened.

Comparison with commercially available PAC

- 10 g/L ABR was comparable to 0.1 g/L PAC.
- ABR worked better for PFAS with ≥ 6 carbons.
- ABR has the potential to exhibit higher adsorption capacity when containing higher concentration PFAS in the mixture.

DEAS	Langmuir									
PFAS	K _L (L/µg)	Q _m (µg∕g)	R ²	K _F						
PFHxA	0	4.11 ×10 ¹¹	0.515	0.009						
PFHpA		-		1.523	1.416					
PFOA	0.029	188.679	0.963		0.834					
PFNA	0.005	3333.333	0.977							
PFDA	0	$5.380 imes 10^{9}$	0.523			0.641				
PFBS	0	2.288 ×10 ¹²	0.802	0.009	1.887		1.24 ×10 ⁻¹²			0.973

• The surface of the adsorbent is

homogeneous.

• The adsorption is reversible.

DEAS	Langmuir			Freundlich							
PFAS	K _L (L/µg)	Q _m (µg/g)	R ²	K _F	1/n	R ²	K _s				
PFHxA	0	4.11 ×10 ¹¹	0.515	0.009	2.050	0.966					
PFHpA		-		1.523	1.416	0.998					
PFOA	0.029	188.679	0.963	5.958	0.834	0.950					
PFNA	0.005	3333.333	0.977	20.469	0.791	0.881					
PFDA	0	5.380 ×10 ⁹	0.523	60.632	0.693	0.641					
PFBS	0	2.288 ×10 ¹²	0.802	0.009	1.887	0.915	1.24×10 ⁻¹²			0.973	

- The surface of the adsorbent is
 Nor
 homogeneous.
 irrev
- The adsorption is reversible.

• Nonideal, multilayer, and

irreversible adsorption at a

heterogeneous surface.

DEAS	Langmuir				Freundlich			Sips			
PFAS	K _L (L/μg)	Q _m (µg∕g)	R ²	K _F	1/n	R ²	K _s	b	Q _m (µg/g)	R ²	
PFHxA	0	4.11 ×10 ¹¹	0.515	0.009	2.050	0.966		-			
PFHpA		-		1.523	1.416	0.998		-			
PFOA	0.029	188.679	0.963	5.958	0.834	0.950	0.001	2.433	198.793	0.982	
PFNA	0.005	3333.333	0.977	20.469	0.791	0.881		-			
PFDA	0	5.380 ×10 ⁹	0.523	60.632	0.693	0.641		-			
PFBS	0	2.288 ×10 ¹²	0.802	0.009	1.887	0.915	1.24 ×10 ⁻¹²	6.123	106.729	0.973	

- The surface of the adsorbent is homogeneous.
- The adsorption is reversible.

- Nonideal, multilayer, and
 - reversible adsorption at a
 - heterogeneous surface.

- A hybrid of Langmuir and Freundlich
- Can represent adsorption equilibrium in a

wide range of adsorbate concentrations.

Calculation of Dosage: (PFHpA as an example)

Apply usage rate for PAC:	D_{PA}
(Freundlich isotherm)	

$$D_{PAC} = \frac{C_{inf} - C_{eff}}{q_e | C_{eff}}$$
$$q_e | C_{eff} = K C_{eff}^{\frac{1}{n}}$$

Initial Concentration ($C_{influent}$) (100µg/L)	Removal Efficiency (treatment goal)	C _{effluent} (µg/L)	q _e (µg/g)	D (g/L)
	99%	1	1.52	64.99
	95%	5	14.88	6.39
100	90%	10	39.69	2.27
100 -	50%	50	387.59	0.13
	30%	70	624.13	0.05
	10%	90	890.87	0.01

Removal efficiency of short-chain PFAS

PFAS	Adsorbent	Concentration (PFAS)	Dosage (g/L)	Removal efficiency	Reference
		500 ng/L	10	38%, 71%, 93%, 100%, 94%	This study
РЕВА, РЕРЕА, РЕНХА, РЕНРА, РЕВЗ	ADK	100 µg/L	50	31%, 77%, 95%, 96%, 94%	
PFHxA, PFHpA	BAC	30 mg/L	0.2	<10%, 10-30%	(Du et al., 2015)
PFBA, PFHxA, PFBS	GAC	1 and 100 µg/L	0.2	50% (10%), 68% (30%), 70% (40%)	(Liu et al., 2021)
PFPeA, PFHxA, PFHpA, PFBS	GAC, PAC	100 ng/L	0.01 and 0.05	(GAC) 20%, 30%, 50%, 45%, (PAC) 10% for all	(Son et al., 2020)
PFBA, PFHxA, PFBS	IRA910 (ion-exchange resin)	30 mg/L	0.05	<10%, <10%, 15%	(Maimaiti et al., 2018)
PFBA, PFPeA, PFHxA, PFHpA, PFBS	PEI-F-CMC (Poly ethylenimine -functionalized cellulose microcrystals)	1 µg/L	0.025	2%, 2%, 12%, 37%, 5%	(Umeh et al., 2024)

Conclusions

The activation process of ABR can enhance the adsorption capacity.

The adsorption of FPAS on ABR occurred on the surface.

F might be interacting with metallic elements and dominated by chemisorption.

< 10 g/L ABR may be appropriate for Σ PFAS removal, where the removal efficiency is maximized.

The use of ABR to remove PFAS substances offers sustainable potential and environmental and economic benefits.

Recommendations

1	Characterize ABR saturated with a wider range of PFAS and organic compounds.

2	Assess ABR treatment performance for real-life wastewater scenarios.

3	Assess the regeneration capability.	
)

4	Explore pilot-scale options.
_	

Acknowledgments

Dr. Maricor Arlos University of Waterloo Assistant Professor

Fei Cheng University of Alberta MSc

Dr. Nas Yousefi University of Alberta Applications/Research Specialist

Brett Mason University of Alberta Environmental Engineering Technologist

Huixin Qiu National University of Singapore Master Student

Dr. Tamzin Blewett University of Alberta Associate Professor

Dr. Shihong Xu University of Alberta Applications/Research Specialist

Demi Meier University of Alberta Research Assistant

Dr. Aaron Boyd University of Alberta

Peng Li University of Alberta Characterization Manager

Yupeng (David) Zhao University of Alberta Civil Engineering Technologist

Acknowledgments

https://www.arloslab.com/

Thank you for your attention!

GRÖN

