Assessing the potential of Activated Bauxite Residue (ABR) to remove PFAS in the water column

Jingya Pang

MSc, Department of Civil and Environmental Engineering University of Alberta November 4. 2024

Co-authors: Huixin Qiu^{1,2}, Scott Berggren³, Maricor Arlos¹ 1Department of Civil and Environmental Engineering, University of Alberta 2College of Food Science and Technology, Shanghai Ocean University 3GRÖN Holding Corporation

Presentation Outline

(1) Introduction

- PFAS Overview
- Novel treatment methods to PFAS
- \bullet Fate of ABR

- (2) Methodology
	- Experimental design

<u>ାଆର୍</u>
ଜାଆ୍ $Z\!I\!N\!X$

(3) Result & Discussion

(4) Conclusion & Recommendations

PFAS: perfluoroalkyl and polyfluoroalkyl substances

A group of synthetic organic compounds characterized by **at least one H substituted by F** and the presence of **other functional groups**.

PFCAs: perfluoroalkyl **carboxylic** acids

Persistent, mobile, toxic substances (PMTs)

Particularly in various aquatic matrices

3 Detected everywhere

Ocean $0.195 - 4.925$ ng/L

Groundwater $5.3 - 615$ ng/L

Fresh water $0.4 - 207.59$ ng/L

https://www.pexels.com/photo/clear-glass-pitcher-pouring-water-on-clear-drinking-glass-3500006/

Drinking water average of 6.4 ng/L

Removal efficiency of PFAS in WWTPs

PFAS are **highly recalcitrant** to conventional wastewater treatment processes.

Existing wastewater treatment processes are insufficient in removing PFAS and may even introduce more PFAS into the water.

Regulations on PFAS in drinking water

1987, the **Montreal Protocol** defined essential uses of fluorine, related to health, safety and the functioning of our society..

2019, the **Stockholm Convention** on Persistent Organic Pollutants added **PFOA and PFOS** to the limited/forbidden list.

Health-based guidance for PFAS concentrations in drinking water in Canada

Europe: 4.4 ng/kg weekly dose of ∑PFOA, PFOS, PFNA, PFHxS, 2020, EFSA **Germany:** 3 g/L for lifelong PFOA and PFOS exposure 300 ng/L for PFOA and PFOS in drinking water

Italy: PFOS ≤30 ng/L, PFOA ≤500 ng/L, and other PFAS ≤500 ng/L in drinking water

9

Issues associated with short-chain compounds

In Canada, short-chain PFAS are the most prevalent species.

In source and drinking water, PFBA showed the highest concentration, 2.64 ng/L and 2.59 ng/L.

In WWTPs, short-chain PFAS are up to 73% of ∑42PFAS in both influent and effluent.

Persistence (P)

Bioaccumulation potential (B)

(eco)toxicity (T)

Long-range transport potential (LRTP)

Similar persistence to the long-chain ones.

Less bioaccumulative than long-chain ones in animals and humans, but **higher uptake** into the leaves, stems, and fruit of plants

A less toxic trend except for PFHxA (a higher ecotoxicity than PFOA to aquatic species)

More mobile due to their higher solubility in water and weaker sorption to solids

Regulations on PFAS in drinking water

Health-based guidance for PFAS concentrations in drinking water in Canada

Adsorption as a treatment option

• Flexible, highly efficient, easy to operate, stable to noxious substances, environment sustainable, low cost;

- Can be derived from different sources;
- Produce no secondary pollution;
- Increase recovery and reuse.

Adsorption

What is bauxite residue?

• High alkalinity

-
- Leaching and contamination risks

• Substantial generation and storage

ABR in wastewater treatment

ABR residual management

Research Objectives

Evaluate the potential of the **activated bauxite residue (ABR) as an adsorbent material** for removing PFAS from the water column.

Characterize "virgin" and "spent" ABR (i.e., before and after applications)

2

Determine adsorption kinetics and isotherm for the removal of different PFAS substances

Assess the removal efficiency of PFAS through adsorption by ABR and **compare** with powdered activated carbon (PAC).

3

1

General experimental design

General experimental design

PFAS substances used

Results — Surface area analysis

- Surface area and total pore volume did not change substantially.
- Pore sizes are heterogenous.
- **Mesopores dominated (2–50 nm).**

- Mesopores can promote the adsorption capacity and removal efficiency of PFAS
- \checkmark Access to adsorption sites is easier for long-chain PFAS.
- \checkmark Larger PFAS molecules can easily get in and
	- aggregate.

Results — Surface area analysis

Results — Surface area analysis

Surface element concentration

• PFAS: 0.1 mg/L \rightarrow 100 mg/L, %atom: 4.60% \rightarrow 57.69%

Surface element concentration

• PFAS: 0.1 mg/L \rightarrow 100 mg/L, %atom: 4.60% \rightarrow 57.69%

• Supporting that PFAS adsorbed on the surface of ABR.

Bond types on the surface of ABR

How did F interact with ABR? \parallel **F-bond types can be qualitatively analyzed using the XPS spectra.**

F might be interacting with other metallic elements on the surface

Preliminary investigation on dosage and period

Preliminary investigation on dosage and period

Long-chain PFAS compounds achieved nearly 100% removal.

- Stronger electrostatic interactions
- Stronger hydrophobic interactions
- Higher molecular weight (MW)
- Preference to form molecular/colloidal aggregates

Preliminary investigation on dosage and period

All were between 80 and 90%.

Either short- (1h) or long-term (24h) was suitable for long-chain PFAS.

PFBA may desorb from ABR as time went by.

28

PFAS adsorption kinetics with ABR

• The adsorption capacity ranged from 0.1 to 2 µg/L.

PFAS adsorption kinetics with ABR

• The rate-limiting step is chemisorption.

• Specific bond formation likely happened.

Comparison with commercially available PAC

- 10 g/L ABR was comparable to 0.1 g/L PAC.
- ABR worked better for PFAS with ≥6 carbons.
- ABR has the potential to exhibit higher adsorption capacity when containing higher concentration PFAS in the mixture.

• The surface of the adsorbent is

homogeneous.

• The adsorption is reversible.

- The surface of the adsorbent is homogeneous.
- The adsorption is reversible.

• Nonideal, multilayer, and

irreversible adsorption at a

heterogeneous surface.

- The surface of the adsorbent is homogeneous.
- The adsorption is reversible.
- Nonideal, multilayer, and
	- reversible adsorption at a
	- heterogeneous surface.
- A hybrid of Langmuir and Freundlich
- Can represent adsorption equilibrium in a
	- wide range of adsorbate concentrations.

Calculation of Dosage: (PFHpA as an example)

$$
q_e|C_{eff} = KC_{eff}^{\frac{1}{n}}
$$

 $q_e|U_e$

Removal efficiency of short-chain PFAS

Conclusions

The activation process of ABR can enhance the adsorption capacity.

The adsorption of FPAS on ABR occurred on the surface.

F might be interacting with metallic elements and dominated by chemisorption.

< 10 g/L ABR may be appropriate for ∑PFAS removal, where the removal efficiency is maximized.

The use of ABR to remove PFAS substances offers sustainable potential and environmental and economic benefits.

Recommendations

Acknowledgments

Dr. Maricor Arlos University of Waterloo Assistant Professor

Fei Cheng University of Alberta MSc

Dr. Nas Yousefi University of Alberta Applications/Research **Specialist**

Brett Mason University of Alberta Environmental Engineering Technologist

Huixin Qiu National University of Singapore Master Student

Dr. Tamzin Blewett University of Alberta Associate Professor

Dr. Shihong Xu University of Alberta Applications/Research **Specialist**

Demi Meier University of Alberta Research Assistant

Dr. Aaron Boyd University of Alberta

Peng Li University of Alberta Characterization Manager

Yupeng (David) Zhao University of Alberta Civil Engineering **Technologist** UF ALBERTA

Acknowledgments

https://www.arloslab.com/

Thank you for your attention!

