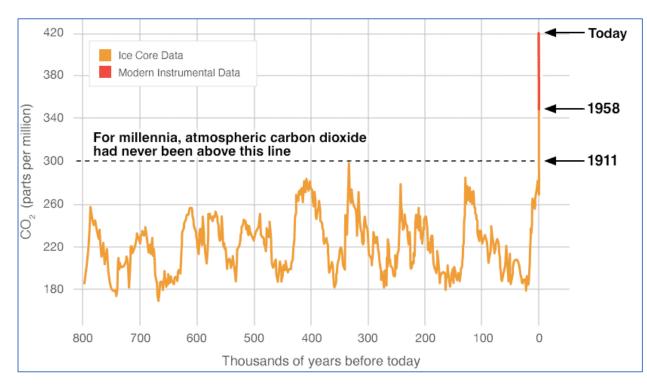


Reducing GHG Emissions TAKING ACTION AND GETTING INVOLVED

Jeff Carmichael, Ph.D.

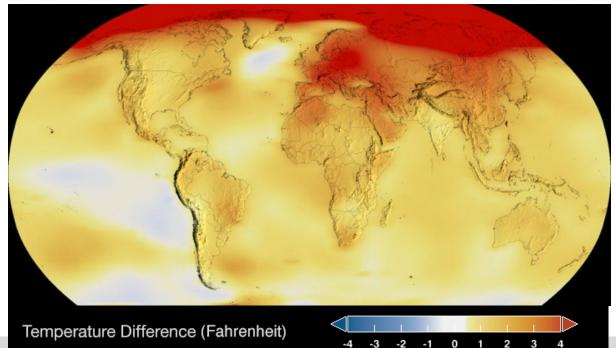
Division Manager, Business Development

Maureen Hodgins

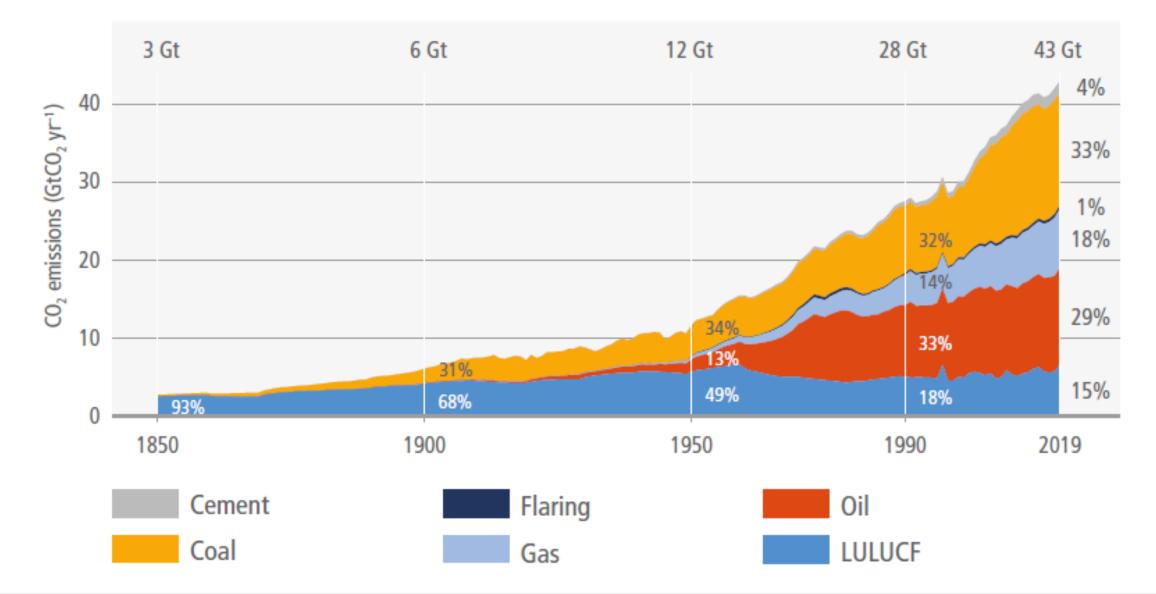

Senior Account Manager, Water Research Foundation

CWWA National Water and Wastewater Conference November 4, 2024 71858706 **metro**vancouver

Climate Change and Water Recovery Utilities: Taking Action and Getting Involved

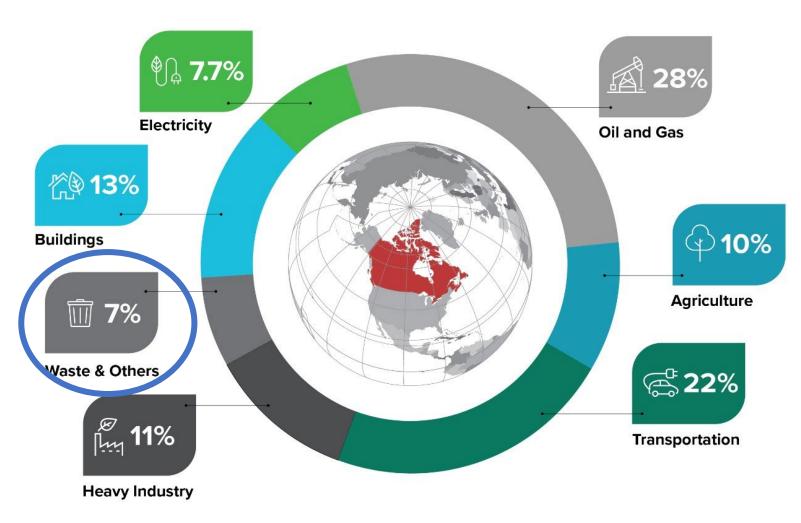

- 1. Climate change and impacts
- 2. Global GHG emission sources and targets, and wastewater industry contributions
- 3. Emission sources from water recovery and water utilities
- 4. Metro Vancouver emissions and plans for action
- 5. WRF projects underway and planned
- 6. Why and how to get involved

Climate change and impacts



Impacts: water supply, wildfires, food, flooding

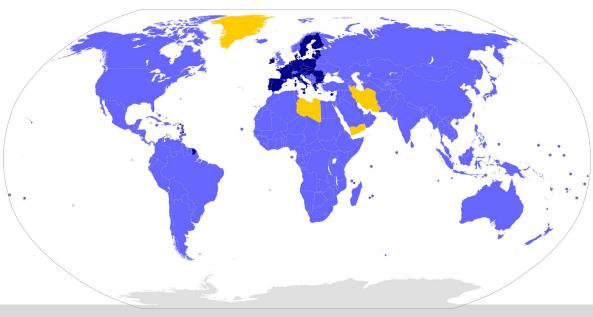
Carbon dioxide levels rising, causing rising global temperatures


Global GHG Emissions Over Time

metrovancouver

Global GHG Emission Sources

Canada's GHG Emissions by Economic Sector (2021)



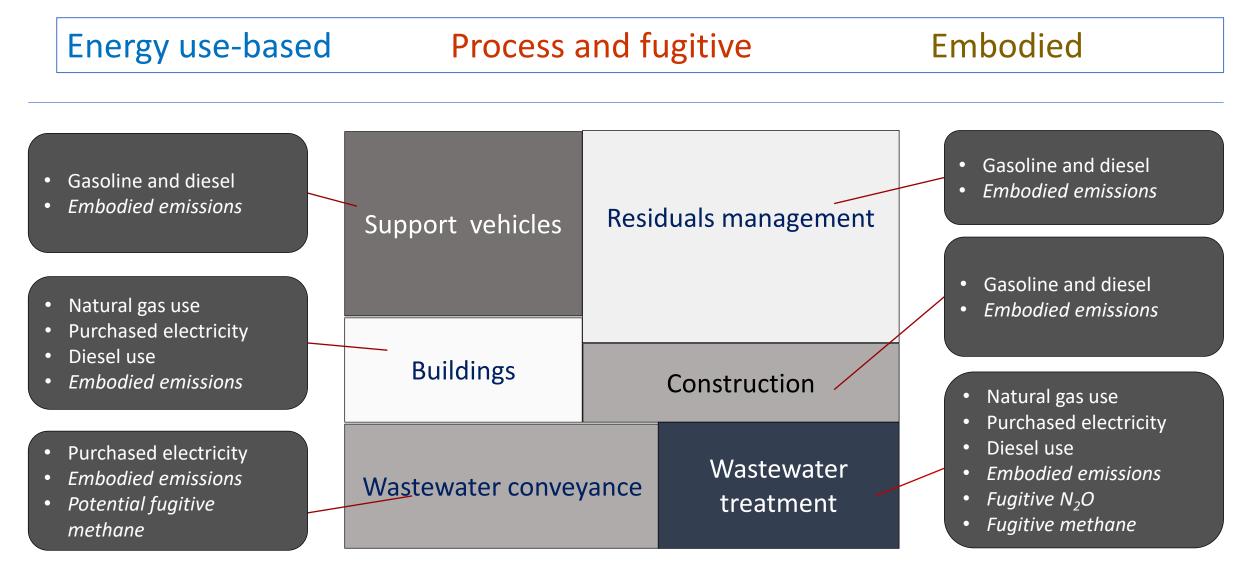
Water and water recovery utilities: 1 to 3% of global carbon emissions

Estimates rising as we learn more

* National Inventory Report 1990-2023: Greenhouse Gas Sources and Sinks in Canada

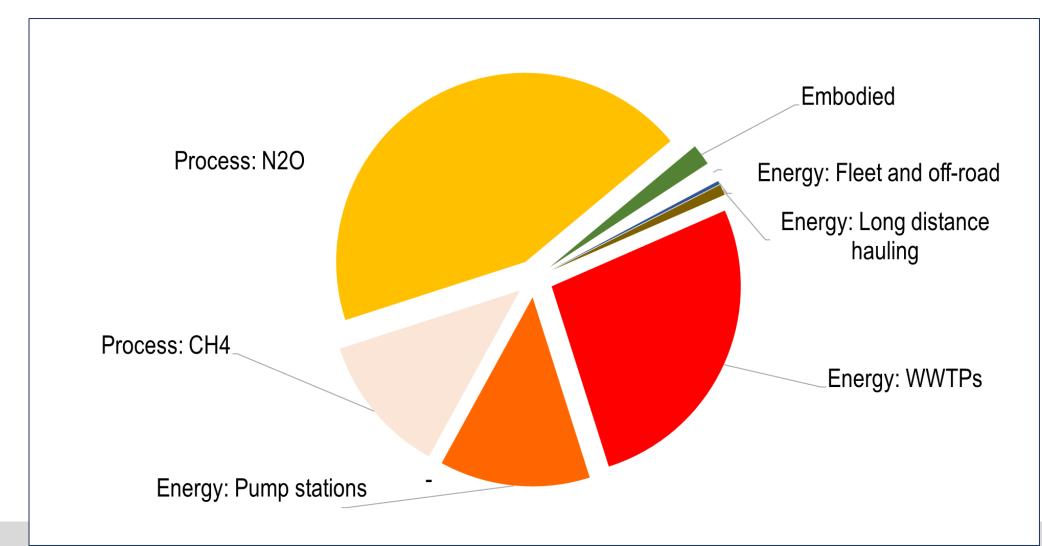
Global action to cut GHG emissions in half by 2030 and achieve net-zero by 2050

Global Climate Commitments

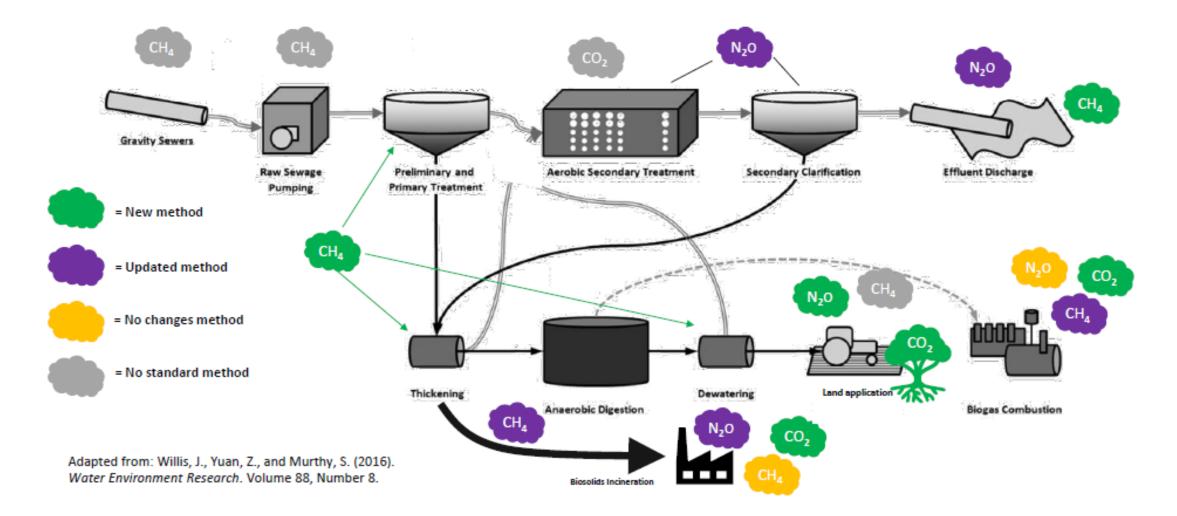

- <u>Sustainable development goal (SDG) 13</u>: Take urgent action to combat climate change and its impacts
- <u>Paris Agreement</u>: 196 Parties committed to limiting global warming to 1.5°C
- <u>Global Methane Pledge</u>: Reducing global methane levels by 30% from 2020 by 2030.

Canada's Climate Commitments (Paris agreement)

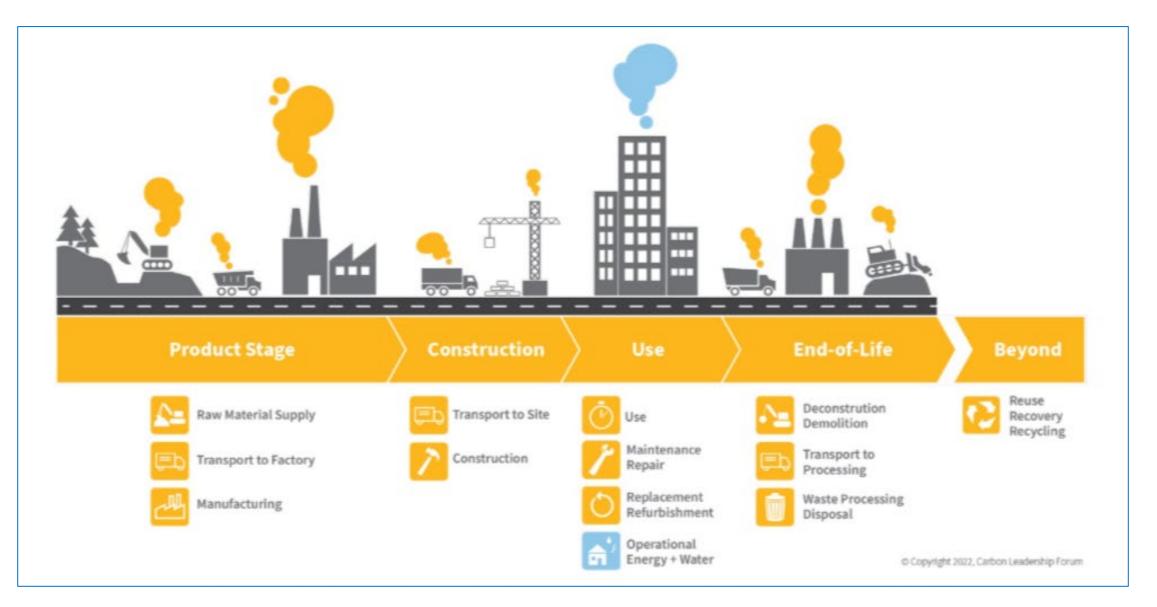
• Emissions 40 percent below 2005 levels by 2030 and net-zero emissions by 2050.


metrovancouver

Liquid Waste GHG Emission Sources

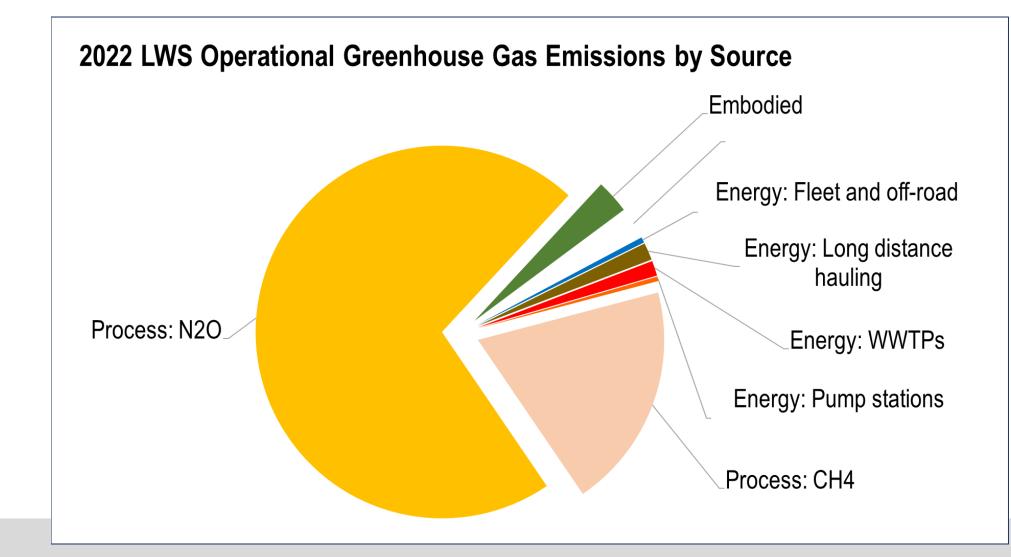

Resource recovery potential, to reduce regional GHG emissions

Hypothetical GHG Emission Inventory Example (typical utility electricity grid)


metrovancouver

Process Emission Sources from Wastewater Treatment Processes

Source: Brown and Caldwell


Embodied Emission Sources from Wastewater Treatment Processes

METRO VANCOUVER WASTEWATER TREATMENT PLANTS AND PUMP STATIONS

GHG Emission Inventory Example: Metro Vancouver

metrovancouver

Challenges for Conducting Municipal WRRF GHG Inventories

- Lack of standardized methodologies & boundary for wastewater emissions
- Regulatory reporting excludes known emission sources
- Changing scientific understanding leads to obsolete baselines
- Historical inventories exclude most or all process emissions or use outdated emission factors

Detailed Breakdown Emission Source		Unit	TOTAL	2023
Scope 1	Digester Biogas Combustion	tCO ₂ eq/year	142	142
	Biosolids Sludge Incineration	tCO ₂ eq/year	28,235	28,23
	Process N ₂ O from Aerobic Treatment	tCO ₂ eq/year	33,313	33,31
	Process CH ₄ from Aerobic Treatment	tCO2eq/year	2,311	2,31
	Fugitive N ₂ O from Effluent discharge	tCO ₂ eq/year	4,147	4,14
	Fugitive CH ₄ from Anaerobic Digester	tCO ₂ eq/year	427	42
	Fugitive CH ₄ from Effluent discharge	tCO2eq/year	287	28
	Natural Gas Combustion	tCO ₂ eq/year	5,468	5,46
	Fuel Oil Combustion	tCO2eq/year	1,449	1,44
	Diesel Combustion	tCO2eq/year	81	8
	Propane Combustion	tCO2eq/year	-	-
	Fuel Combustion for Vehicle Fleet	tCO ₂ eq/year	-	
	Scope 1 Total Greenhouse Gas Emissions		75,859	75,85
Scope 2	Electricity Consumed	tCO ₂ eq/year	2,333	2,33
Scopez	Scope 2 Total Greenhouse Gas Emissions	· · · · · · · · · · · · · · · · · · ·	2,333	2,33
	Electricity upstream	tCO ₂ eq/year	1,304	1,30
	Natural Gas upstream	tCO2eq/year	1,640	1,64
Scope 3	Fuel Oil upstream	tCO ₂ eq/year	490	49
	Diesel Upstream	tCO ₂ eq/year	29	2
	Propane Combustion	tCO ₂ eq/year	-	-
	Fleet Vehicle fuel upstream	tCO ₂ eq/year	-	
	Chemical production	tCO ₂ eq/year	2,134	2,134.018
	Chemical transportation	tCO ₂ eq/year	-	-
	Biosolids Management	tCO ₂ eq/year	-	-
	Scope 3 Greenhouse Gas Emissions		5,597	5,59
Total Gre	enhouse Gas Emissions	tCO2eq/year	83,788	83,78

The OWWA/WEAO GHG Inventory Tool for Water Utilities

- Released April 2023
- Maintained by a sub-committee of the OWWA/WEAO Climate Change Committee
- "Made by water utilities, for water utilities"

OWWA/WEAO Greenhouse Gas Emissions Inventory Tool

Home

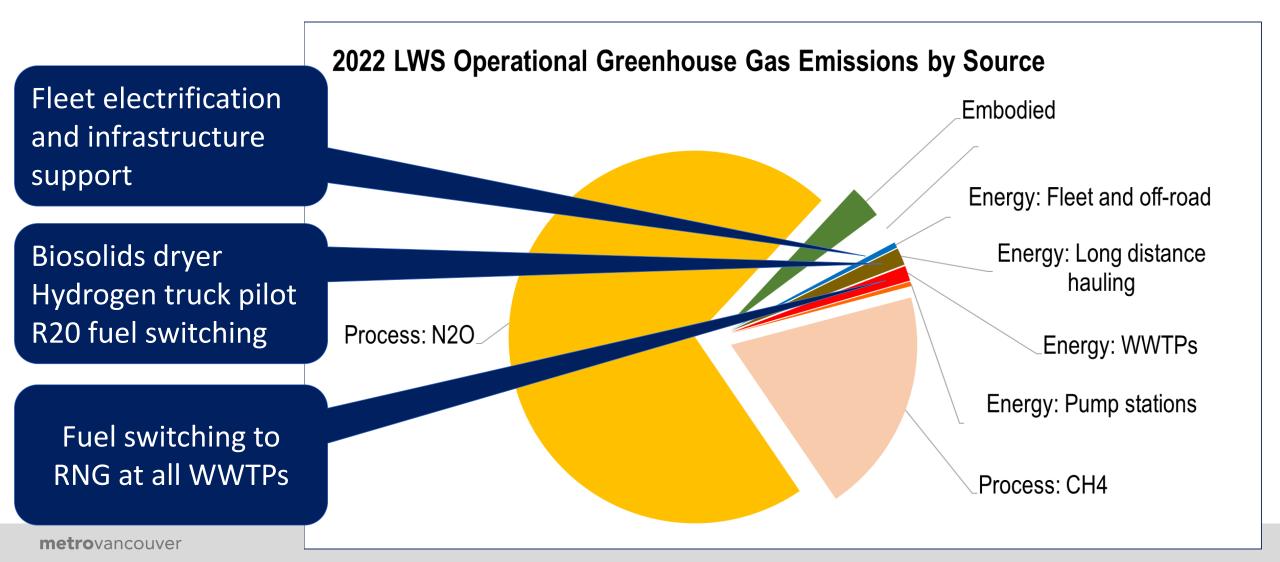
GHG Inventory Tool

Click on the links below to download the OWWA/WEAO Greenhouse Gas Emissions Inventory Tool (GHG Inventory Tool). The tool is hosted and maintained by a Sub-Committee of the OWWA/WEAO Climate Change Committee. The GHG Inventory Tool is free and transparent, and was designed to be accessible to all users with inputs that utilities commonly already have on hand. The Climate Change Committee welcomes feedback on the tool and user guide. Users are encouraged to send corrections and improvement suggestions to the committee

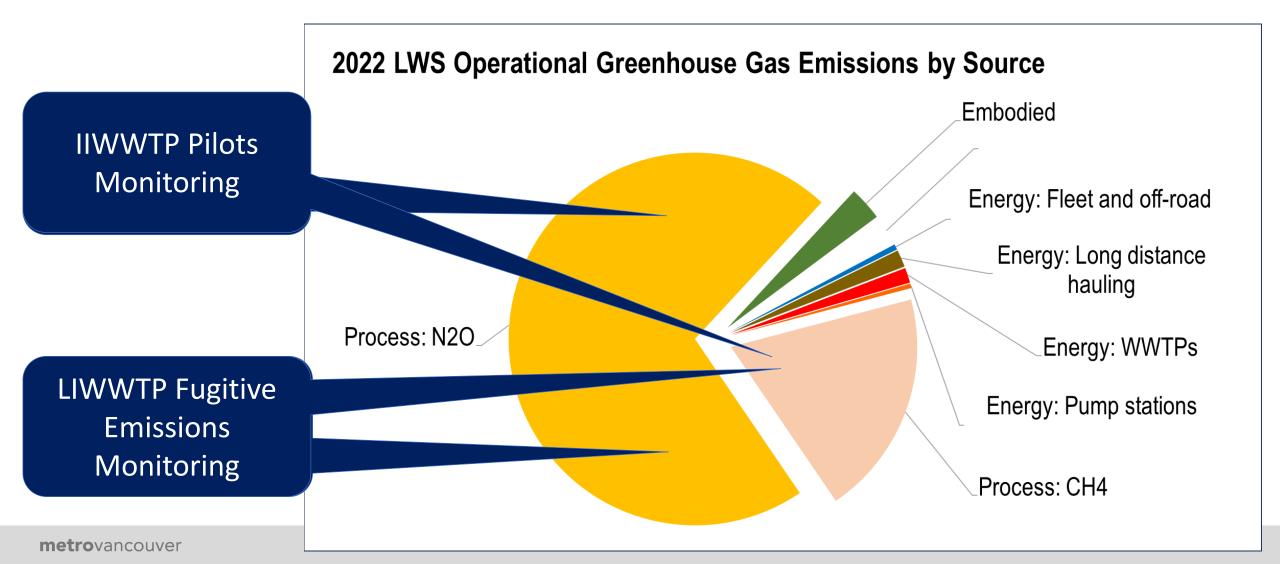
at ghgtool@weaocommittee.org.

OWWA/WEAO GHG Inventory Tool

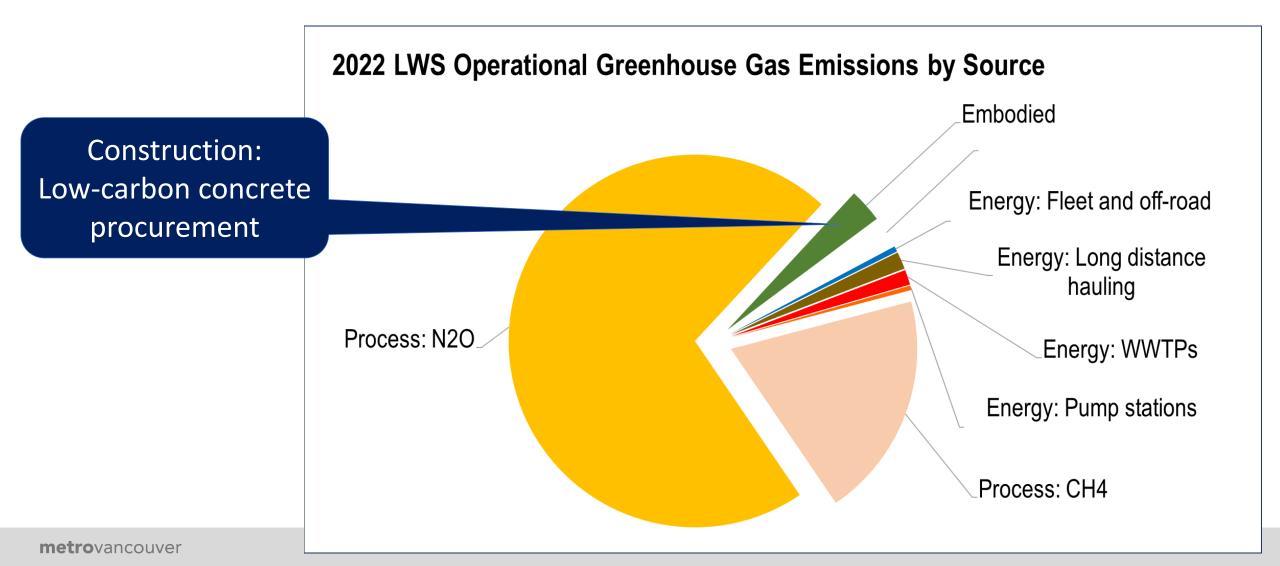
owwa.ca


- → Climate Change Committee
- → GHG Inventory Tool for Water Utilities

OWWA/WEAO GHG Inventory Tool User Guide


OWWA/WEAO GHG Inventory Tool Includes

Scope	Emission Source	Wastewater Treatment	Wastewater Collection	Drinking Water Treatment	Drinking Water Distribution	Supporting Systems (lab, admin, etc.)
Scope 1	CH ₄ Emissions from wastewater treatment	\checkmark		6		1/121
	CH ₄ Emissions from wastewater effluent	\checkmark			旧形动作员	
	N ₂ O Emissions from wastewater treatment	\checkmark		- Z	722 P	
	N ₂ O Emissions from wastewater effluent	\checkmark		2	óľði	
	CH ₄ Sewer system		Х	- 5		M
	Sludge incineration	\checkmark		200	19405	
	Biogas combustion/flaring	\checkmark			1766747	
	Fossil fuel combustion (Natural gas, Fuel oil, Diesel, Propane, Fleet Vehicle)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Scope 2	Electricity consumption	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Upstream production of electricity	\checkmark	\checkmark	\checkmark	\checkmark	
Scope 3	Upstream production of fuels	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Biosolids and ash management (offsite)	\checkmark	\checkmark			
	Imported Chemicals	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Embodied Carbon	X	X	X	X	X


Metro Vancouver Actions: Energy

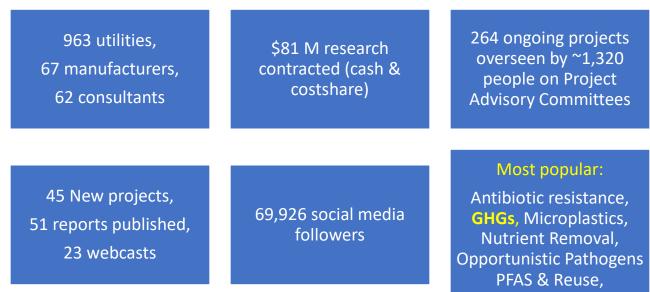
Metro Vancouver Actions: Process

Metro Vancouver Actions: Embodied

Skier's Guide Summary: What Can Utilities Do?

GHG Sources	Use of energy: direct use	Use of energy: 3 rd party suppliers	Energy recovery, for off-site use	Treatment process emissions	Embodied emissions	Avoided off- site process emissions
Potential efforts utilities can make	Switch to Renewable natural gas Electrical efficiency projects Fleet switching and right- sizing	Establish procurement and reporting requirements by service suppliers that lead to cleaner energy sources and lower energy use	Assess potential for RNG sale Assess potential for sewer / effluent heat recovery Establish policies/rules to support projects	Participate in research efforts, including modelling and sampling, to better understand and reduce CH ₄ and N ₂ O fugitive emissions	Procurement advances: how to encourage / require low- GHG concrete Knowledge advances: identify key embodied emission materials	Potential for further studies on impacts: fugitive methane capture, carbon capture in soil

WRF: Who We Are


Research Co-operative: Funds, manages, & publishes research

- 2018 integration of 3 research collaboratives:
 - WateReuse Research Foundation
 - Water Environment Research Foundation
 - Water Research Foundation, (formerly AwwaRF),
- 501(c)(3) nonprofit, educational organization

OUR MISSION

To help our subscribers discover opportunities and solve problems by delivering actionable water research to meet the needs of the communities they serve.

2023 – WRF By The Numbers

WRF Leadership

WRF Board of Directors (33 members)

- Chair Paul Rush, NYC DEP
- Lou Di Gironimo, Toronto Water Marilyn Towill, Metro Vancouver

WRF, CEO Peter Grevatt, PhD

Canadian Utility Subscribers

AB	City of Lethbridge Water Utility
	EPCOR Water Services Inc.
	Regional Municipality of Wood Buffalo
	The City of Calgary Water Services
BC	Capital Regional District Integrated Water Services
	City of Kelowna
	Metro Vancouver
	City of Ottawa
	Lake Huron & Elgin Area Water Supply Systems
	Oxford County Public Works Department
ON	PUG Services Corporation
	Regional Municipality of Waterloo
	Regional Municipality of York Water Supply
	Toronto Water
NS	Atlantic First Nations Water Authority
	Halifax Water
٢٧	Buffalo Pound Water Treatment Corporation
SK	City of Regina

The 16 Topics that WRF is using in Research Priority Program (since 2022)

Healthy Communities & Environment

- Holistic Watershed Management & Integrated Planning
- Monitoring Tools at Watershed & Sewershed Scale
- Receiving Water Quality Management

- Treatment: Innovation and Optimization
- Treatment & Process Optimization
- Nature-based
 Solutions
- Diversifying Water Systems

- Efficient Resource Use & Recovery
- Energy Efficiency, Intensification & Resource Recovery
- Climate Change Mitigation: Addressing Greenhouse Gases
- Nutrient Removal & Recovery
- Solids Management

Resilient

Infrastructure

• Asset Management

Distribution System

Integrity & Water

Collection Systems

Integrity & Water

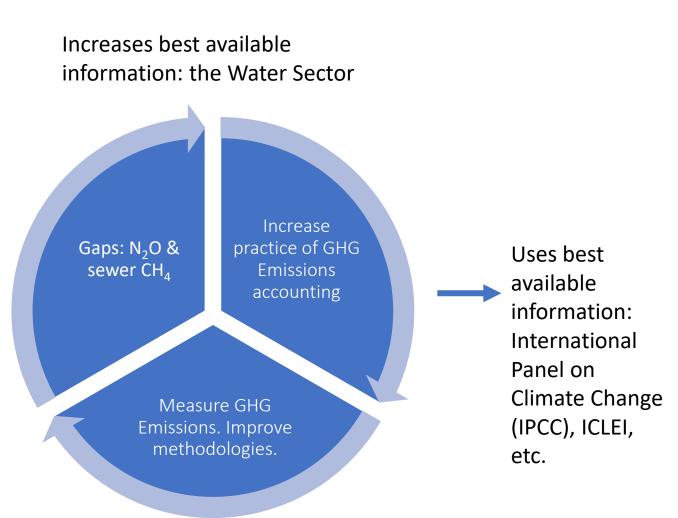
Quality Impacts

Quality

Utility Operations & Management

- Water Resource Planning
- Workforce
 Management
- Financial Management

Climate Risk Assessment & Adaptation, Communication, Environmental Justice, Digital Transformation


Climate Change Mitigation: Addressing GHG

Objectives

- advance GHG accounting & emission reductions, decarbonization strategies, carbon capture associated with water utilities
- best practices, methods, processes, & tools,
- effective planning & operational management
- cost-effective
- collaborate with partners
- Relied on ~25 water sector experts' input

Collaborators

 AWWA, Canadian Water Network, Consulting firms, IWA, Universities, Utilities, US DOE, US Water Alliance, WEF GHG Focus Group

WRF Climate Change Mitigation: Addressing Greenhouse Gases

Category	Project Title, [Project #], Lead Researcher	Project Value	Status
GHG Inventory & Data (One Water)	Establishing Industry-Wide Guidance for Water Utility Life Cycle Greenhouse Gas Emission Inventories [5188], David Ponder, US Water Alliance	605K	2023-26
	Developing a GHG Emissions Library for Unit Processes by Water Utilities and Decentralized Systems [5255], John Willis, Brown and Caldwell	956K	2024-27
GHG Monitoring & Methods	Sewer Methane Methods for Everyone [5220], John Willis, BC	529К	2023-26
	Advancing the Understanding of Nitrous Oxide Emissions Through Enhanced Whole-Plant Monitoring and Quantification [5251]	250K plus	Contracting
	"Head-to-Head" GHG Measurement Comparisons : Evaluating Plant-wide and Process-specific Quantification Methods [5310]	350K plus	RFP Sep 2024
Decision making for Mitigation	Beyond Net Zero: Advancing Interdependencies Between Utility Greenhouse Gas Emission Reductions and Water-Energy-Food Nexus [5187], Marcello Pibiri, Univ. of IL	266K	2023-26
	Balancing Carbon Management, Energy Production, Nutrient Removal and Densification [5271], Leon Downing, Black & Veatch	872K	2024 –27
	Tradeoffs Between Process Optimization, GHG Mitigation, and Energy Efficiency [5288]	200K plus	RFP Sep 2024

Total: \$1.68M WRF \$405K Cofund \$392K Costshare \$845K Inkind \$2.35M Total

Challenge: lack of consistent GHG accounting in the water sector

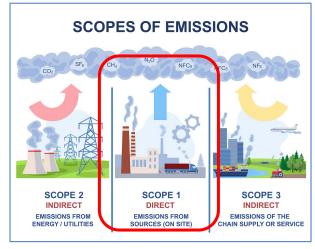
Solution: Increase capacity for GHG accounting

Establishing Industry-Wide Guidance for Water Utility Life Cycle Greenhouse Gas Emission Inventories [5188]

- Team: US Water Alliance plus
- Utility Participants: 20 (5 Canadian: On CWA, Guelph)
- Case Studies: 9 (Durham Region, Halton Region, & Metro Vancouver)
- Develop excel tool, user's manual, case studies
 - Built off of IPCC-2019-based concepts,
 - Current, best-available Emissions Factors
 - Areas of uncertainty (process N₂O & sewer CH₄)
- Workshops & webinars for engagement w/ community
- Will help drinking water and wastewater utilities to start using GHG Protocols estimate their operation's emissions

Challenge: Current GHG Emissions Factors for process units are based on very small datasets

Solution: Share your One Water GHG Emissions Dataset with us!


Developing a GHG Emissions Library for Unit Processes by Water Utilities and Decentralized Systems [5255]

- Research Team: Brown and Caldwell, Princeton, The Climate Registry, ICLEI, plus
- Utility Participants: 10 (Metro Vancouver)
- Survey: WRRF Current GHG Emission Inventories & Mitigation Plans, <u>https://lnkd.in/erjHRm</u>
- Share your measured GHG Emissions & Energy Use Data to The Climate Registry
 - Meta data: operating data, experimental plan, synthesis/reporting, recommendations, contact info
 - Dataset can be anonymous
 - Already have ~50 entries for 9 GHG sources from over 20 WRRF facilities
- International GHG Expert Panel to review & recommend

Products:

- WRF Literature Review, Library User Manual
- The Climate Registry Library (free to WRF subscribers)
- More accurate Emission Factors & consensus on methods, ready for adoption by TCR & ICLEI

Challenge: How much methane comes from sewers? It's hard to estimate, so omitted from GHG Inventories

Solution: measure sewer methane emissions & develop estimation methods

Sewer Methane Methods for Everyone [5220]

- Research Team: Brown and Caldwell, U Queensland, Aalbord U, Catalan Institute for Water Research, ICLEI,
- Utility Participants & Co-funders: 9, (Metro Vancouver)
- Develop a larger data set of gravity sewer methane emissions
 - 6 full-scale campaigns (Metro Vancouver) & pilot scale
- Develop gravity sewer estimation methods
 - Detailed method more user inputs & test w/ 40-50 sewersheds
 - Simple method limited user inputs (population, temperature, pipe length)
- Recommend methods to ICLEI and IPCC
- Better understand sewer methane and include it in GHG Inventories
- Will collaborate with sewer methane work in NSERC grant to Elsayed Elbeshbishy, Toronto Metro University

Ater Research, ICLEI, PROJECT NO. ••••U5R12b/4885b Conveyance Asset Prediction System Sewer Methane Estimation Methodology and Significance Determination Environmental Science & Technology > Vol 57/Issue 6 > Article Sever Methane Estimation Methodology and Significance Determination

Global Warming Potential

CO2 = 1, **CH₄=28**, N₂O=265

CRITICAL REVIEW | February 3, 2023

Methane Emissions from Municipal Wastewater Collection and Treatment Systems

metrovancouver

Challenge: N₂O knowledge gap & it has a very high Global Warming Potential

Solution: Increase knowledge

Advancing the Understanding of Nitrous Oxide Emissions Through Enhanced Whole-Plant Monitoring and Quantification [5251] (contracting)

- Research Team: Emma Shen, Jacobs, plus
- Utility Participants: 21 = 40 WRRFS! 10 international, 9 US, 3 Cdn Durham Region, Metro Vancouver, Waterloo Region
- 1-yr continuous online monitoring
- Monitoring by liquid-phase, gas-phase & site-wide measurements Produce:
- Standard approach for conducting on-site N₂O monitoring
- Best practices in mitigating N₂O & minimize risk of N₂O in new builds
- Country-level N₂O estimate from WW sector

Global Warming Potential CO2 = 1, CH_4 =28, N_2O =265

Analysis | Open access | Published: 27 August 2024

Oversimplification and misestimation of nitrous oxide emissions from wastewater treatment plants

Cuihong Song, Jun-Jie Zhu, John L. Willis, Daniel P. Moore, Mark A. Zondlo & Zhiyong Jason Ren

Nature Sustainability 7, 1348–1358 (2024) Cite this article

Challenge: Which method should I use to measure my WRRF's CH4 and N2O emissions?

Solution: Compare measurement methods

GHG Measurement Comparisons: Evaluating Plant-wide and Process-specific Quantification Methods [5310]

Status: **Request for Proposal, due Nov 14, 2024**, <u>https://www.waterrf.org/open-rfps</u> Compare approaches:

- gas concentration measurement
- fixed measurement devices
- point-in-time plantwide measurement campaigns
- If you want to be involved, reach out to me!

Replay WRF's 2023 GHG Webcasts!

- WW Perspective on GHG Accounting, David Ponder, Metropolitan Council of the Twin Cities
- GHG Accounting Standards, Protocols, & Methods, John Willis, Brown and Caldwell
- Biosolids GHGs, Christine Polo, Carollo Engineers
- WW Sector Best Practices and Trends, Emma Shen, Jacobs

- Mobile Measurements of Facility GHGs, Mark Zondlo, Princetor University
- GHG Estimates in the Literature, Jason Ren, Princeton University
- Toronto Water's GHG Inventory, Emily Zegers, Toronto Water

www.waterrf.org/webcasts-events

2024 Webinars: Wastewater Process GHG Emissions

Fundamentals of Wastewater Process Greenhouse Gas Emissions, July 18, 2024

- GHG Accounting Standards, Protocols, Methods, John Willis, Brown and Caldwell
- WW Process GHG Emissions, Amanda Lake, Jacobs

Methane Emissions from Wastewater Treatment, Sep 19, 2024

- How to Measure WW Methane, John Willis, Brown and Caldwell
- Direct Measurements of Methane, Adrian Romero, Jacobs
- New Bioenergy Program, Trung Le, Brown and Caldwell

Nitrous Oxide Emissions from Wastewater Treatment, Oct 31, 2024

Opportunities for Process Emissions Reductions, Dec 12, 2024

Register for Series

This series is organized by the US Water Alliance and Canadian Water Network, hosted by The Water Research Foundation, and presented in collaboration with the Danish Water Technology Alliance, Water Environment Federation, and the International Water Association.

Engaging with Others

- Charting the course to Net Zero water: Canadian Water Network
 - Funded by Environment and Climate Change Canada, initiated August 2024
 - Contacts: Jessica Akande or Laura Fiore
- GHG Emissions in Wastewater Treatment Plants and Sewer Systems, **NSERC grant**,
 - Lead: Elsayed Elbeshbishy, Toronto Metropolitan University, \$1.4M Canadian,
 - Covering: Monitoring GHG emissions (ground, drone, aircraft and satellite detection tools), Pilot-Scale Sewer System Models, and Predictive Models with AI
- <u>Greenhouse Gas Inventory Tool</u>, Ontario Water Works Association & Water Environment Association of Ontario (OWWA & WEAO)
 - Under their <u>Climate Change Resource Page</u>, & includes links to additional resources and webinars
- Measuring Life Cycle Greenhouse Gas Emissions from WRRF Workshop by US Department of Energy, Industrial Efficiency and Decarbonization Office (IEDO)
 - <u>Workshop presentations and report</u>, Jan 2024. Identified a need for work to improve GHG emissions measurement techniques, & funding may follow.
- WEF GHG Focus Group on GHG Mitigation,
 - Chaired by Emma Shen, Jacobs. Under the WEF Residuals and Biosolids Community
- WRF, Climate Change <u>Topic Area</u>