Predicting Water Temperature Inside WDS Using Deep Learning

Ehsan Roshani, Ph.D., P.Eng., PMP.

Mostafa Bigdeli, Ph.D. Candidate.

Brett Snider, Ph.D.,

National Research Conseil national de Council Canada recherches Canada AGENDA

Background

Data

Methodology

Outcomes

Conclusion and Recommendations

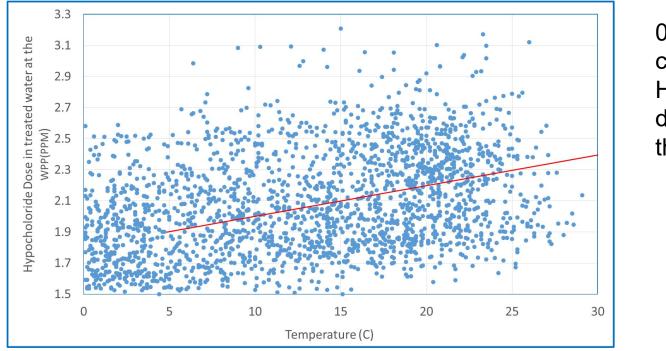
Why Water Temperature is Important?

Water quality:

- Physical, chemical and biological processes.
- Microbial growth and competition,
- Pipe corrosion,
- Chlorine decay

Why Water Temperature is Important?

Why Water Temperature is Important?



0.02 PPM to the concentration of Hypochlorite per 1 degree increase in the air temperature

WDS Climate Change Risk & Opportunities

Impact of Changing Climate on

- Demand
- Watermain Capacity
- Energy
- Pipe Break
- Water Quality

NATIONAL RESEARCH COUNCIL CANADA

NRC CNRC

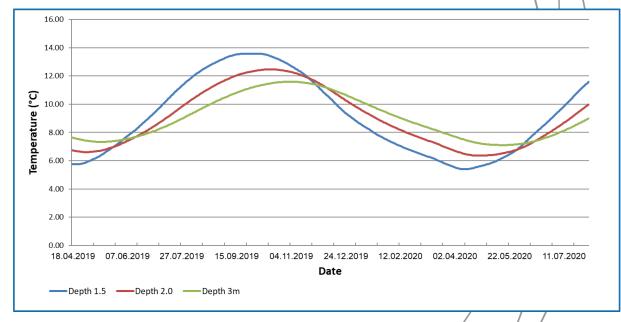
Canada

Water Distribution Systems Climate Change Risks and Opportunities

Author(s): Ehsan Roshani, Yehuda Kleiner, Andrew Colombo, Elad Salomons Report No.: CRBCPI-Y5-19 Report Date: 10 January 2022 Contract No.: A1-009962 Agreement Date: 29 November 2016

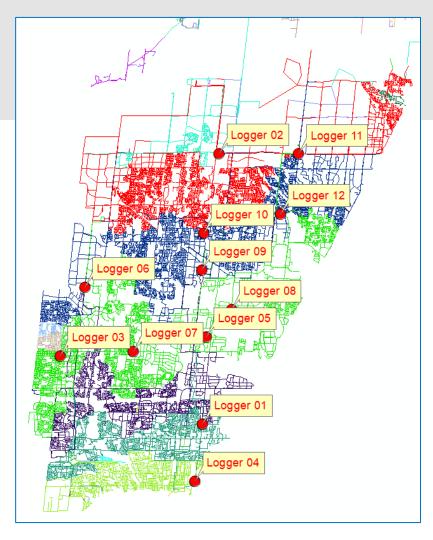
Previous Works

- The literature in this area is limited (Numerical or Physical Models).
- Heavily relying on soil
 temperature
- Often use water temperature from the consumer side.



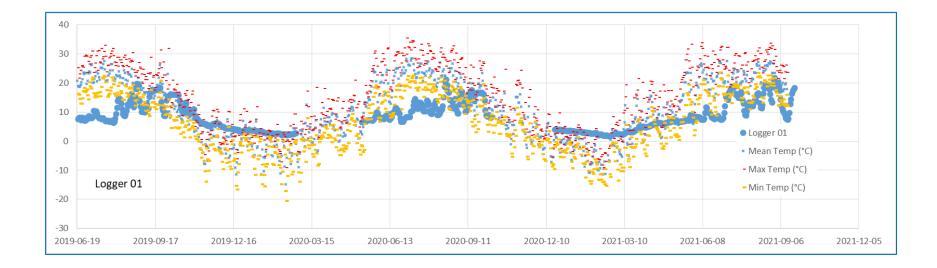
Getting temperature from inside the WMs

Logger Locations



NATIONAL RESEARCH COUNCIL CANADA

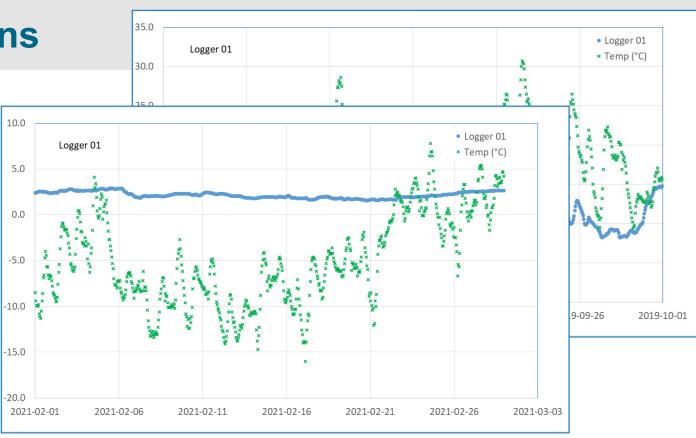
Observations



10

Observations

 Daily temperature fluctuation is not as important.



Long-Short Term Memory (LSTM)

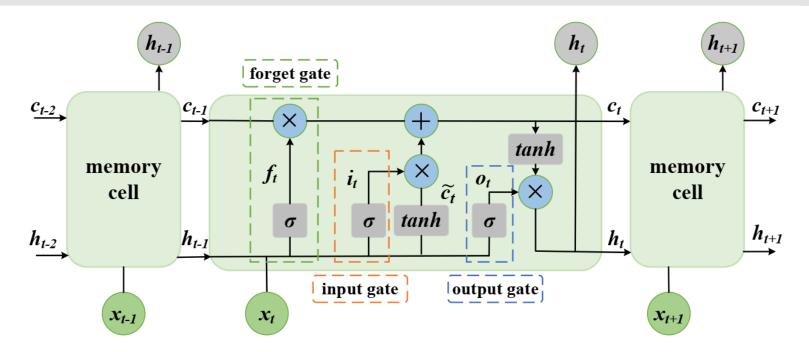
Proven effectiveness in modeling time series.

These models have been shown to often surpass the accuracy of many physics-based models.

LSTMs maintains information over long sequences.

Advanced variant of Recurrent Neural Network (RNN) introduced in 1997!

Long-Short Term Memory (LSTM)



Long-Short Term Memory (LSTM)

Data from Logger 1 was used to train the model.

70% for training and validation and 30% for testing.

14 previous time step (based on R2).

Two hidden layers with 256 and 16 LSTM cells, respectively, and the ReLU activation function.

To prevent overfitting, a Dropout layer was included, with a dropout rate of 0.2 during training phase.

Scenarios

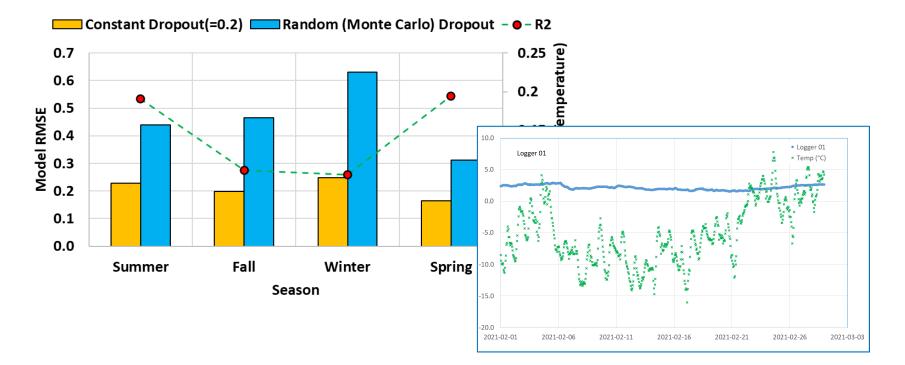
1- Fixed past (previous 14 timesteps) to predict upcoming timestep.
 a- Constant dropout of 20%
 b- Monte Carlo dropout

2- Fixed past (previous 14 timesteps) to predict upcoming 10 time steps.
 a- Constant dropout of 20%
 b- Monte Carlo dropout

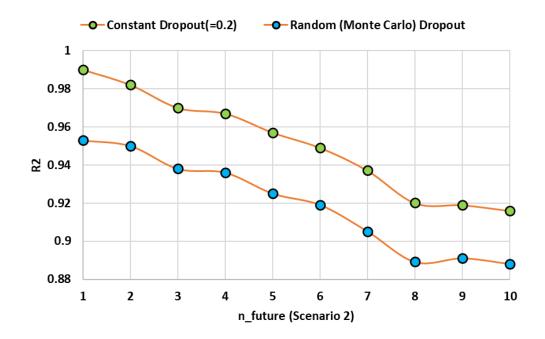
First Scenario

Dropout method	MSE	RMS E	NRMS E	Avera ge Error (°C)	Max Error (°C)	MAE	R ²
Constant (=0.2) dropout	0.014	0.119	0.014	0.075	1.1	0.075	0.993
Random (Monte Carlo) dropout	0.047	0.216	0.046	0.144	1.82	0.144	0.957

First Scenario



Second Scenario



Third Scenario

Performance Indicator	Scenario 2 – Constant Dropout	Scenario 3 – Constant Dropout	Scenario 2 – Random Dropout	Scenario 3 – Random Dropout
MSE	0.067	0.075	0.099	0.108
RMSE	0.26	0.27	0.32	0.33
MAE	0.160	0.161	0.216	0.220

Conclusions

1- Constant dropout led to better accuracy.

2- LSTM perform well in predicting temperatures based on air.

3- It performs much better in summer than in winter.

4- Even for 10 hour forecast the RMSE is 0.3 degree which is very usable.

THANK YOU

Ehsan Roshani, Ph.D. P.Eng. PMP. • Research Officer and Team Lead •/Ehsan, Roshani@nrc-cnrc.gc.ca

National Research Conseil national de Council Canada recherches Canada