

Today's Presenter

Jean Gagnon Lead Researcher Veolia

Agenda

Wastewater Intensification memDENSE MBR Case Study: Detroit Lakes

Summary

Wastewater Intensification

Wastewater Intensification

TWO CORE SOLUTIONS

ZeeLungTM

MABR

process intensification GHG reduction

MABR: Membrane <u>Aerated Biofilm</u> Reactor

Separator = <u>Settling</u>

zeedense™ reference since 2022

ZeeWeedTM

MBR

sensitive discharge water reuse

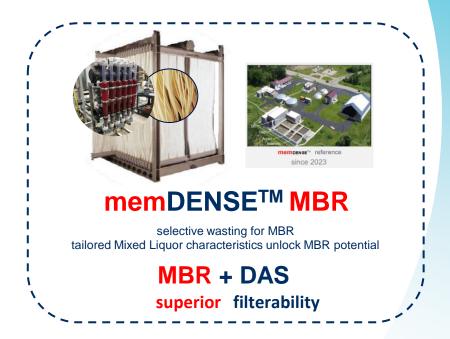
MBR: Membrane <u>Bioreactor</u>

Separator = <u>Filtration</u>

membense™ reference since 2023

Membranes + Densified Activated Sludge (DAS)

UNLOCKING TECHNOLOGY POTENTIAL

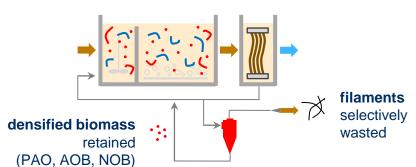


ZeeDENSETM MABR

super intensification of activated sludge

MABR + DAS

superior loading & settling



MBR + DAS = memDENSE

EFFICIENT COUPLING, 2 MAIN PRINCIPLES

Memberse Mbr

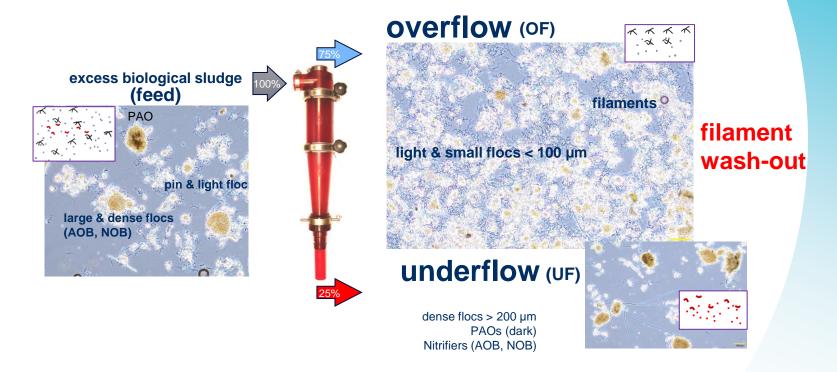
tailored MLSS characteristics unlock MBR potential

SELECTIVE WASTING

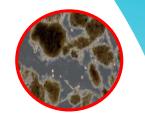
removal of light biomass fraction

- · foulants, colloids, pin floc
- nuisance bacteria, filaments

DENSIFICATION


retention of dense biomass fraction

- improved filterability
- nutrient removal specialists
 - PAO = Polyphosphate-accumulating organisms
 - AOB = Ammonia-oxidizing bacteria
 - NOB = Nitrite-oxidizing bacteria



memDENSE MBR

SELECTIVE WASTING & SLUDGE DENSIFICATION

memDENSE MBR 4 SYNERGISTIC FUNCTIONS

de-selection/retention

filaments wash-out, PAOs & AOBs augmentation

separation

wash-out of poor filterable materials (low TTF, super fine cTOC, cCOD ...)

bioselection

bioreactor configuration has **direct impact on microbial morphology architecture**(feast/famine, rbCOD, COD bleeding, ORP/DO profiles...)

redirection

fast growing organism leave OF to sludge line as SRT uncoupling of flocs/granules ↑

and numerous benefits...

memDENSE MBR at City of Detroit Lakes

City of Detroit Lakes, Minnesota

Phosphorus | target: 0.066 mg/L

Approach:

- Biological w/ chemical trim
- Chemical on centrate return

Nitrogen | target: 7 or 10 mg/L

Approach:

Biological

City of Detroit Lakes MBR WHY IMPLEMENT DENSIFICATION

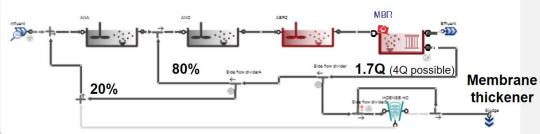
Solving challenges

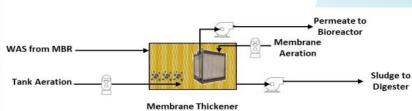
- Significant foaming
- Seasonal permeability struggles
 - Spring melt high flows
 - Multiple events challenge the system: Surfactant, Oil, WWF Peak
- Strengthen phosphorus removal
 - BioP plant with 0.066 mg/L discharge limit
 - Increase PAO resiliency to chemical cleans
- Increase resilience to seasonal changes
 - Steep temperature drop, spring melt/precipitation
 - Winter (temp), spring (high flows) & summer (tourism) different operation regimes

memDENSE MBR at Detroit Lakes

18+ MONTHS EXPERIENCE

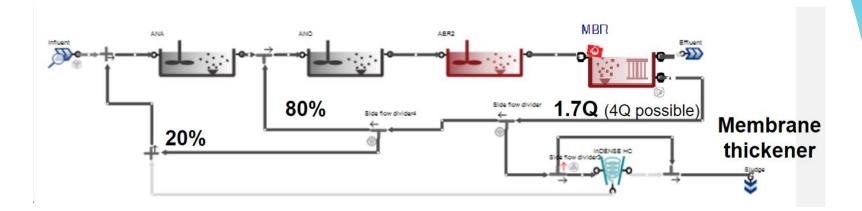
1.2 MGD (4,550 m³/d) ADF, 5 MGD (19,000 m³/d) PHF


Waterline:


- Equalization tank,
- Pre-treatment (grit removal)
- ZeeWeed-MBR (A2O), UV disinfection

Sludge Line:

- Membrane thickener (ZeeWeed),
- Aerobic digestion,
- Dewatering by centrifuge


memberse installation at Detroit Lakes, MN, USA

memDENSE MBR

PROCESS OPERATION

Biology

Total SRT	Aerobic SRT	F/M
(days)	(days)	(kgBOD/kgVS/d)
15-25	9-10	0.05

memDENSE MBR

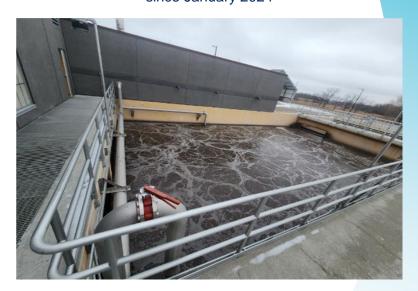
1.5-YEAR LOOK BACK ON PERFORMANCE

January 2023 to today (2024)

- Filaments washed-out, foam disappeared
- SVI ↓ to 50 mL/g, TTF & CST followed!
- TTF ↓ (<50), permeability ↑ by 30-55% in same flux conditions (↓TMP)
- Oxygen transfer improved (\(\psi \text{kWh/kgNr} \))
- Mixed liquor microbial matrix shifted, DI ↑ (from 35 to 65-80%)
- Membrane resistance ↓ 32% (cake resistance ↓ 68%)
- ↓ **50% Chem-P** consumption (BioP boost)
- ↓ 20% Chemical Membrane Recovery Cleaning (CIP)

In-progress

- Correlate permeability & validate flux over time
- Study resistance and pore blocking as function of Densification Index (DI%)



memDENSE MBR SELECTIVE WASTING

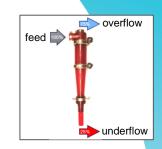
Before April 2022

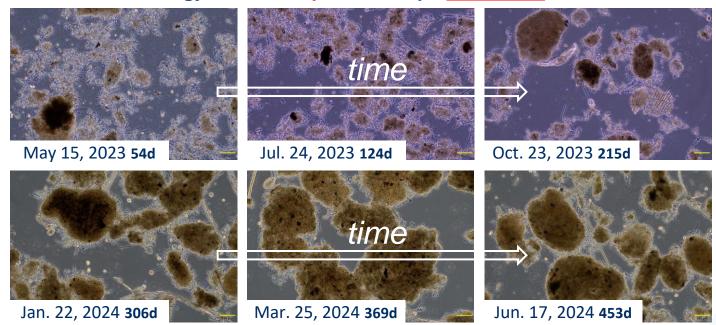
After memDENSE implementation since January 2024

foam disappeared

MBR CAS ▶ memDENSE MBR MACROSCOPIC MIXED LIQUOR CHANGE

before memDENSE


memDENSE start-up

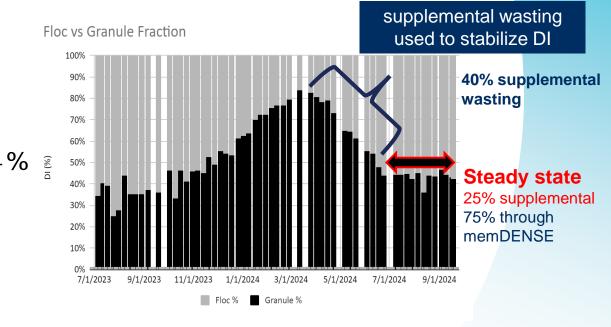

after
memDENSE
(early steady-state)

MBR CAS ▶ memDENSE MBR

MORPHOLOGY

memDENSE Biology - Microscope follow-up - <u>Underflow</u>

Demonstration Results

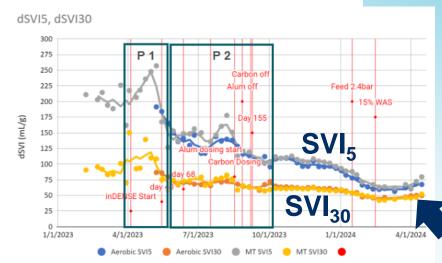


Densification Index

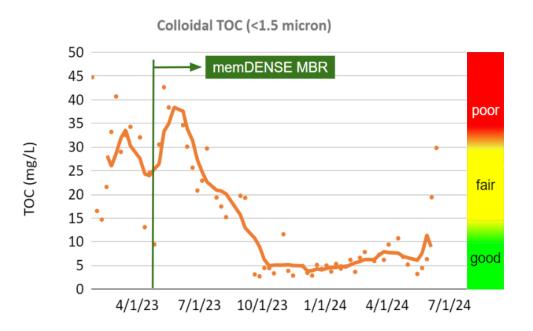
DI CONTROL

$$DI = \frac{\sum Total \, Suspended \, Solids > 200 \, \mu m}{\sum Total \, Suspended \, Solids}$$

MBR CAS ▶ memDENSE MBR IMPROVED SLUDGE FILTERABILITY


Densification retains bacteria with excellent filtering characteristics: more interstitial fluid, more tightly-bound EPS

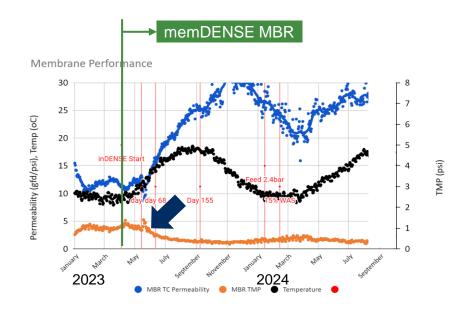
TTF stabilized at 50 sec



TTF drop synchronized with steep SVI drop improving mixed liquor properties & resilience to feed changes

SVI₃₀ stabilized at 50 mL/g

memDENSE MBR REMOVAL OF COLLOIDAL MATERIAL (sCOD, TOC)


↓83% colloidal TOC

↓57% colloidal COD

- Reduced fouling
- Reduced cleaning

memDENSE MBR


IMPROVED TMP & PERMEABILITY

better filtering characteristics

↓ TMP & ↑ permeability

DAS solved W effect

permeability stable all year round
with memberse MBR

Summary

memDENSE MBR

SUMMARY

BIOLOGICAL PERFORMANCE

- nuisance foam elimination
- increased resilience (biologically stable)
- morphology change
- more interstitial fluid
- inventory change (bioP optimization, AOB/NOBs)

MEMBRANE PERFORMANCE

- reduced fouling
- reduced cleaning
- increased sludge filterability
- increased oxygen transfer efficiency
- increased permeability
- optimized performance over the life of the membranes

Acknowledgements

City of Detroit Lakes Public Utility

- Rob Bredeson
- Heather Olson
- Erin Haverkamp
- Corey Will
- Drew Downhour

THANK YOU

Jean Gagnon

jean.gagnon@veolia.com

Chris Shaw

chris.shaw@veolia.com

Sponsored eShowcase:

memDENSE™ MBR: How densification improves MBR performance at the City of Detroit Lakes

