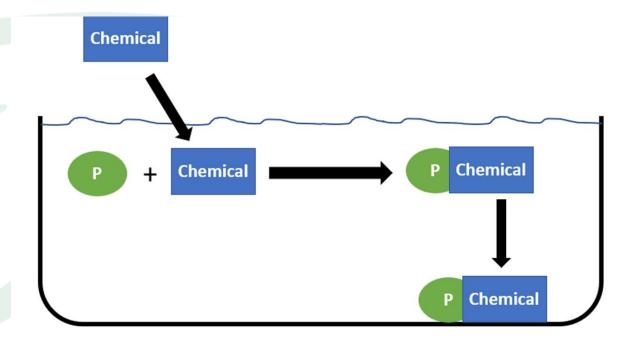

Constructed Wetlands for Wastewater Treatment

NWCC - November 2024 Nicholson Jeke, Ph.D., P.Ag.

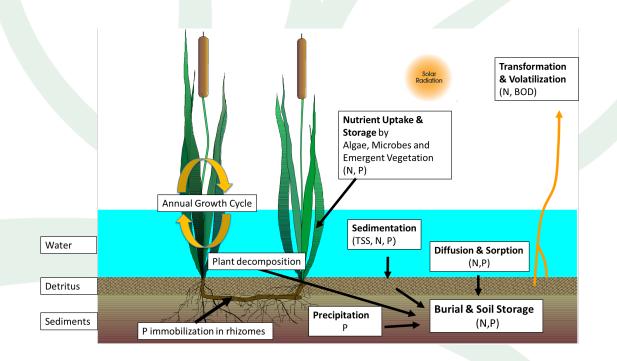
Background

- Prairie aquatic environments susceptible to algal blooms due to phosphorus loading
- As of January 2016, wastewater facilities discharging > 820 kg TP/year must meet 1 mg/L TP limit.
- New and expanding facilities discharging < 820 kg TP/year must meet 1 mg/L limit or demonstrate their nutrient reduction strategy.
- Many small municipalities and First Nation comminutes in Manitoba use lagoons for wastewater treatment
- Phosphorus removal that happens naturally in municipal lagoons not sufficient to meet the 1 mg/L limit


Manitoba Water Stewardship November 28, 2011

https://www.gov.mb.ca/sd/pubs/water/lakes-beaches-rivers/mb_water_quality_standard_final.pdf

Conventional approach


- Chemical coagulation is the most common approach in Manitoba
 - aluminium sulfate (alum) or ferric chloride

- > Effective
- ➢ But...
 - On-going cost of chemical
 - Chemical application challenges
 - Sludge removal/disposal

Surface flow treatment wetlands

- > Natural processes
- Eliminate the use of chemicals
- Can be a low-cost option
- Low maintenance
- > Able to remediate multiple or mixed contaminants

RM of Ste. Anne wetland – 2.7 ha or 6.7 acres

- Lagoon Expansion
- No direct sewage lines trucked hauled wastewater
- Operational year 2024
- Sized to meet MB Provincial guideline (TP < 1 mg/L)</p>

RM of Ste. Anne – 2.7 ha or 6.7 acres

2024 discharge period TP averages

- Secondary cells 3 mg/L
- ➢ Wetland 0.2 mg/L
- Upstream of receiving river 0.1 mg/L

- > Wetland size 17 ha or 42 acres
- Operational Year- 2021
- Sized to meet MB Provincial guideline (TP < 1 mg/L</p>

Wasagamack First Nation Wetland – 0.5 ha

- Designed for treatment of landfill leachate
- Fully operational 2023
- Designed to treat a wide range of contaminants e.g., metals, TSS, organic compounds such as hydrocarbons

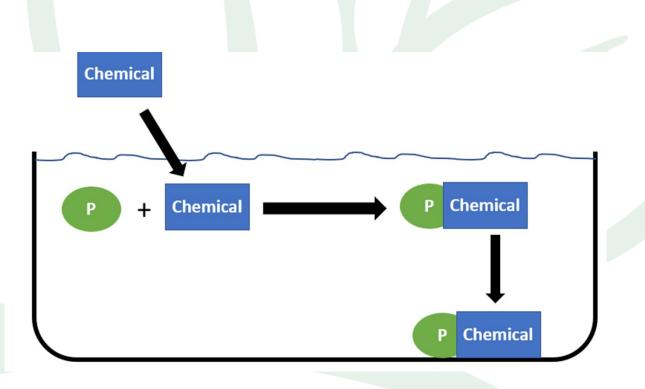
Example of surface flow wetlands outside Manitoba

Okanagan Falls Wetland, BC – 1.4 ha or 3.5 acres

- Designed for polishing effluent from a WWTP
- Designed to further reduce nutrients and other contaminants.

Design Requirements

Large footprint



Wetland design considerations

- Treatment and cost considerations:
 - Conventional versus treatment wetland
 - **Chemical application**

Treatment Wetland

Wetland treatment design considerations

- Hydraulic loading
- > Storage
 - Including winter storage
- Population size
 - Forecast for the life of the system (e.g., 25 years)
- Additional inputs/flows
 - Septic tanks; industry; other
- Release type
 - Continuous vs. monthly
- Nutrients to be treated
 - Currently phosphorous drives design
 - Removal rates
- Residence time
- Site characteristics

Wetland design consideration

Substrate/topsoil for plant establishment

- Need to characterize local soils and determine how characteristics will impact cell design and plant establishment
- Require sufficient soil "barrier" to minimize vertical flow
- Require sufficient depth for plant root establishment

Wetland design considerations

Plant selection

- > Avoid non-native plants (e.g. Phragmites sp.)
- Cattail
 - "Workhorses" for treatment wetlands
 - Adapted for wetland conditions
 - Resilient to disturbances

Wetland establishment considerations

Wetland seed collection and processing

- Seed is not commercially available
- Hand collected and processed

Wetland commissioning

Wetland Establishment & Commissioning

- Seeding
- > Water level management
- > Weed control
- Vegetation & water quality monitoring

Wetland Establishment & Commissioning

- Wildlife concerns (geese, muskrat)
 - Fencing for geese in first few years
 - Potential issues with muskrat would be no different from any other lagoon
 - Cell is designed to be unattractive to wildlife, both wetland and dykes

Operation and Maintenance

- Infrastructure operation
 - Opening and closing valves
- Hydraulic operation
 - Water level and flow control
 - Adequate retention time
- > Water quality monitoring
- Vegetation monitoring
- > Annual reports

Water Quality Monitoring

Typical water quality monitoring licence requirements

Parameter	Secondary Cell	Wetland
CBOD	Monthly	N/A
TSS	Monthly	N/A
Fecal coliforms	Monthly	N/A
Unionized ammonia	Monthly	N/A
		Weekly (first summer of discharge)
TP (mg/L)	N/A	or
		Biweekly (subsequent summers of discharge)

Summary Tertiary Treatment Wetlands

Key points

- > Surface flow treatment wetlands can be effective for both small and large communities
- Wetland sediment provides long-term storage of P
- Surface flow wetlands have low maintenance and lower long-term costs as compared to conventional treatment
- > P characterization/sampling should be started prior to design

Challenges

- > May not be suitable for all communities depending on P treatment required and land availability
- Surface flow wetlands take time to commission (e.g., 2 3 years)
- In addition to more conventional approaches for design, success also requires understanding of wetland science and plant ecology

Questions?

Nicholson Jeke, P.hD., P.Ag. <u>n_jeke@ducks.ca</u> Native Plant Solutions, <u>www.nativeplantsolutions.ca</u>