Too Much of a Good Thing? Re-evaluating Ozone Needs After 20 Years

2024 IOA-PAG Conference

Presented by Michael McKie August 2024

Engineering for **people**

Presentation Outline

- Quick History of Ozone at Burlington
- Design vs Reality
- Re-thinking the Status Quo
- Decision Time
- Path Forward

Halton Region – Burlington Water Treatment Plant

Ozone at the Burlington WTP

- Installed in 2005
- Design dose 2.6 mg/L
 - 1-log *Crypto* inactivation in cold weather limiting
- Capacity 750 kg/d @ 6%; 550 kg/d @ 10%
- Duty/stand-by configuration
- Drinking water licence requires
 0.5-log *Giardia* inactivation
 - 48 times less than design CT

Obsolescence of Critical Components Drives Upgrade

Aging Equipment Concerns

Key findings

- Stock additional spares for obsolete components
- Replace PSUs
- Generator replacement
 anticipated 2030

The contents of this memorandum are intended only for the recipient. Any other use and/or reproduction without prior consent of C3 Water Inc. is strictly prohibited.

The Regional Municipality of Halton

Long-Term Ozone Asset Management Strategy Final Report

C3 WATER INC.

November 9, 2020

Project to replace PSUs initiated in 2023

Reviewing System Operation – System Flow

Reviewing System Operation – Hourly Production

Reviewing System Operation – Daily Production

Reviewing System Operation - Disinfection

Summary of System Operation

- Aging system facing continued O&M concerns
- System capacity >> production requirements
- Opportunity to chart short- and long-term ozone plan

Plotting the Future of Ozone at Burlington

- Design alternative considerations
 - Ozone production range: 32 to 684 kg/d
 - Operational redundancy and improved maintainability
- Alternatives considered
 - Do nothing
 - Like-for-like PSU Replacement
 - Reduce generator capacity by 50% and replace PSUs
 - Replace existing generators with smaller generators
 - Add a third, smaller generator
 - Retrofit existing generators with lead-free dielectrics

Detailing Key Alternatives

- Reduce Generator Capacity by 50%
 - Operational range becomes 27.5 to 375 kg/d for each generator
 - No redundancy available when required dose >375 kg/d
 - Addresses concern with continued maintenance
 - Construction process similar to generator refurbishment
 - Lead time ~18 months (PSU replacement is limiting step)
 - Higher capital cost than a like-for-like PSU replacement
- 3 new, smaller generators
 - Propose three (3) generators sized from 25 to 340 kg/d
 - Two (2) duty, one (1) standby configuration for high production periods
 - Addresses concern with continued maintenance

Detailing Key Alternatives

- Add a third, smaller generator
 - Downsize one(1) existing generator by 50%
 - Add a third generator sized from 27.5 to 375 kg/d
 - Redundancy always available
 - Smaller generators when production <375 kg/d
 - One (1) high capacity or two (2) smaller generators used when production >375 kg/d
 - Addresses concern with continued maintenance
 - No obsolete parts with new system; existing components reused at other facilities
 - Competitive bid for third generator may be required
 - AASI delivery estimated to be limited by PSUs (~18 months)
 - Additional design required; may not be sufficient space with existing layout
 - Higher capital cost than downsizing the existing PSUs

	Capacity (kg/d)
Generator 1 (Existing)	55 to 750
Generator 2 (Existing)	27.5 to 375
Generator 3 (New)	27.5 to 375

Alternative Evaluation

Evaluation Criteria

• Cost

Relative estimated 30-year life-cycle cost (incl. capital and O&M)

Robustness

• Process' ability to handle variable ozone production requirements with redundancy

• O&M

• Ability to meet operational needs and level of maintenance effort required for continued operation

- Construction
 - Minimize construction risk and maintain plant operation during upgrade
- Process resiliency
 - Upgraded system minimizes potential impacts to plant operation
- Procurement
 - Level of effort, complexity and competitive bid requirements

Pair-wise Comparison – Baseline Condition

Criteria	Cost	Robustness	O&M	Construction	Resiliency	Procurement	Relative Score (/25)	Weighting (%)
Cost		2	2	3	2	4	13	14
Robustness	4		3	4	2	5	18	20
O&M	4	3		4	3	4	18	20
Construction	3	2	2		2	4	13	14
Resiliency	4	4	3	4		5	20	22
Procurement	2	1	2	2	1		8	9

- Determine Relative weighting
 - A score of 5 means that the y-axis criteria is much more important than the x-axis criteria
 - A score of 3 means that the y-axis criteria is as important as the x-axis criteria
 - A score of 1 means that the y-axis criteria is much less important than the x-axis criteria
 - Table is a mirror when criteria are reversed (5/1, 4/2, 3/3, 2/4, 1/5)

Sensitivity Analysis

Weighting	Baseline	Cost-centric	O&M-centric	Process-centric
Cost	14	23	14	12
Robustness	20	18	19	26
O&M	20	18	24	16
Construction	14	13	13	12
Resiliency	22	20	21	26
Procurement	9	8	8	9

Alternative Scoring

Criteria	Do Nothing	Like-for- like PSUs	50% Capacity	3 New Gens	3 rd Small Gen	Dielectr Retrofi
Cost (30 yr)	5	4	4	1	2	3
obustness	1	1	3	5	5	3
&M	1	2	5	5	3	4
onstruction	5	4	3	2	2	1
esiliency	1	2	3	5	5	3
rocurement	5	5	5	1	1	5

- Scores assigned are relative
 - A score of 5 means that this option ranks the "best" for the given criteria
 - A score of 1 means that this option ranks the "worst" for the given criteria

Sensitivity Analysis Summary

Evaluation Focus	Primary Alternative (score/100)	Secondary Alternative (score/100)
Balanced	50% Capacity Reduction (74)	3 New Generators (73)
Cost	50% Capacity Reduction (75)	3 New Generators (67)
O&M	50% Capacity Reduction (76)	3 New Generators (74)
Process Operation	3 New Generators (76)	50% Capacity Reduction (72)

Decision and Next Steps

- Preferred alternative: Install a 3rd generator; no upgrades to existing
- Benefits:
 - Improved redundancy and control, long-term O&M flexibility
 - Maximize life cycle of existing equipment
 - Set direction for future upgrades
- Limitations:
 - Does not address obsolescence issues or sizing of existing generators
- Next steps:
 - Detailed design
 - Equipment selection

Acknowledgements

- CIMA+
 - Dennis Mutti, Sabrina Chang
- Region of Halton
 - Stephanie Lapointe, Mark Connell, Rob Newman, Lee Miller, Ian McLeod, Adam Till, Phillip Lawlor, Dan DiTomasso, Maulin Patel

We'd like to tell you more...

Come talk to us here at the conference or get in touch:

Michael Mckie, Ph.D., P.Eng.

Project Engineer, Infrastructure— Water and Wastewater

michael.mckie@cima.ca 519-501-9122

Dennis Mutti, M.A.Sc., P. Eng. Senior Director Infrastructure—Water and Wastewater

dennis.mutti@cima.ca 226-338-3893

Name, Title

email@cima.ca T 000 000-0000, 0000 C 000 000-0000

0000 Street, Suite 000, Town, Province X0X X0X