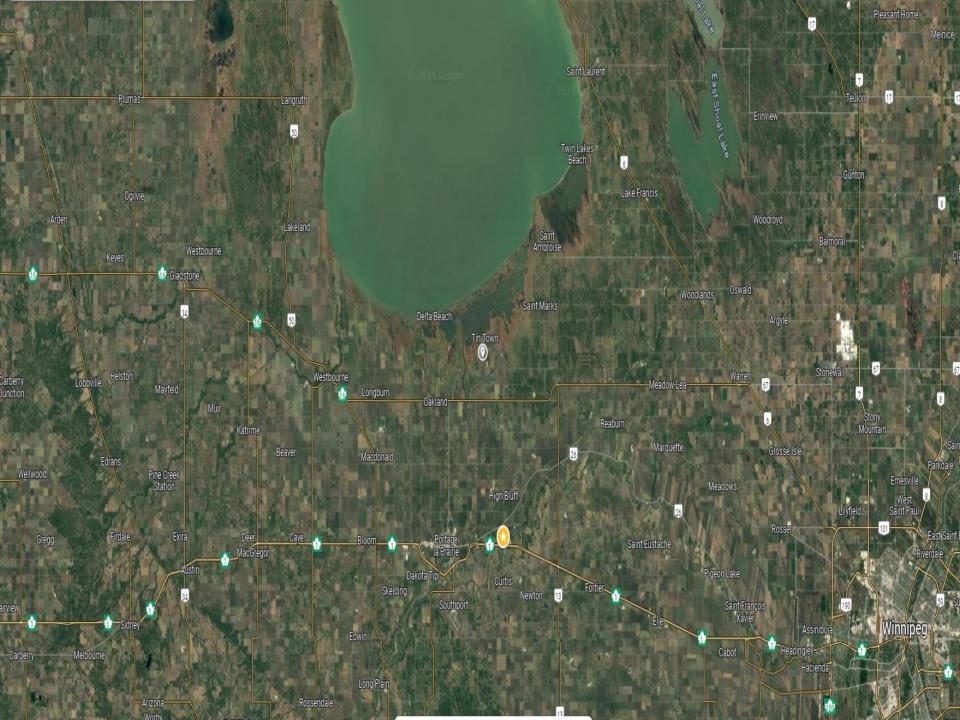


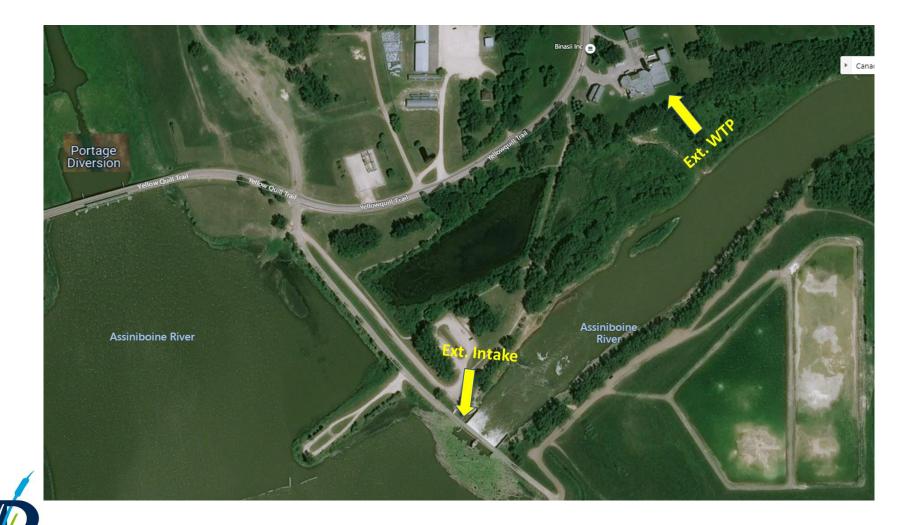
National Water & Wastewater Conference 2024

Expansion of City of Portage la Prairie Water Treatment Plant


Presented By: Karly Friesen Director of Utility City of Portage la Prairie

Presentation Outline

- Project Background
- Design Considerations and Basis
- Detail Design
- Cost estimates & timelines
- Q and A



Portage la Prairie

Location of Water Plant

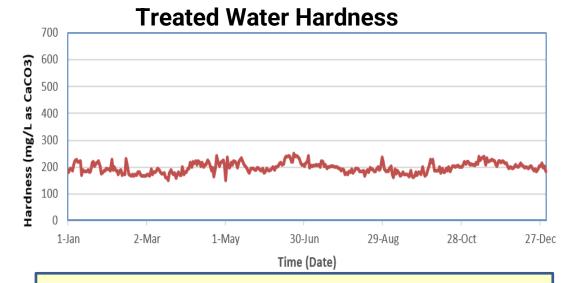
Background

- WTP built in 1978
- Produces on average 24 ML/day
- Provides potable water supply to:
 - 13,000 local population
 - Regional Customers: Southport, RM of Portage, YRWC, CRWC
 Several Industries -
 - Several Industries -McCain Foods, Roquette, Nutri Pea, Simplot, Richardson Milling, Avena Foods

Existing Treatment Plant

- Conventional lime-softening plant
- Actiflo pre-clarification
- Biologically activated dual media filtration
- Ozonation
- Carbon dioxide for recarbonization
- Granular activated carbon filters
- Chlorine disinfection for the distribution system
- Design capacity of 34 million litres/day (net)

Need and Design Basis


- Redundancy
 - The existing WTP design capacity:
 - 34 MLD (total)
 - 17 MLD (firm) largest solid contact clarifier out of service
- Increased Capacity
 - Industrial water demand and Population growth to 2050
 - Projected Water Production Capacity = 55 MLD
 - Required additional capacity = 55 MLD 17 MLD = 38 MLD
- Water Quality
 - High THMs in the Regional System
 - Water Hardness
- Intake Issues

Water Quality

Raw Water

Parameter	Min	Max
Total Alkalinity (mg/L)	54	406
Conductivity (umhos/cm)	862	1110
Total Hardness (mg/L)	220	600
Iron (mg/L)	0.006	26.2
Manganese (mg/L)	0.045	1.61
рН	6.94	9.29
TDS (mg/L)	480	797
TOC (mg/L)	9.8	17
True Color (CU)	17	75
Turbidity (NTU)	7	3922

THM DATA:

- City- 23 μg/L- 26 μg/L
- Regional- 115 μg/L- 353 μg/L

HAA DATA:

- City- 23 μg/L- 26 μg/L
- Regional- 32 μg/L- 53 μg/L

Pre-treatment Expansion (Actiflo)

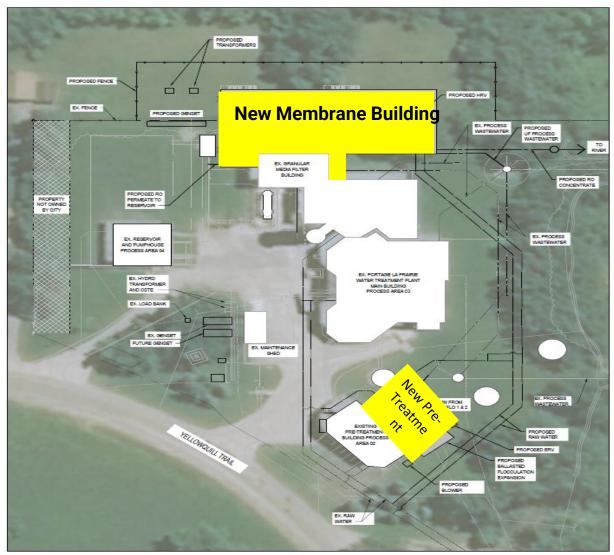
- Actiflo process twinned provides redundancy and operational flexibility
- Pilot testing indicated UF prone to fouling with Actiflo treating water vs enhanced coagulation
 - Only use Actiflo pre-treatment during high turbidity events in spring/fall
 - System will be designed to feed the membrane plant directly from the raw water pumphouse (enhanced coagulation) or Actiflo effluent (as needed)
 - Expansion allows redundancy/flexibility for conventional process operation

Integrated Membrane System

- An Integrated Membrane System (two-stage) for DBP control and capacity
 - 1st Stage submerged UF followed by 2nd Stage RO
 - Enhanced coagulation (CO₂ for pH reduction)
 - 2-50% Break tanks in between
 - Accounts for 64% of the treated water production
- Total of four (4) trains:
 - Total/Firm UF production capacity: 37.5 MLD (net)
 - RO capacity: 30 MLD (total), 22.5 MLD (firm)
- Several chemical feed system
- Process wastewater diverted back to Assiniboine River

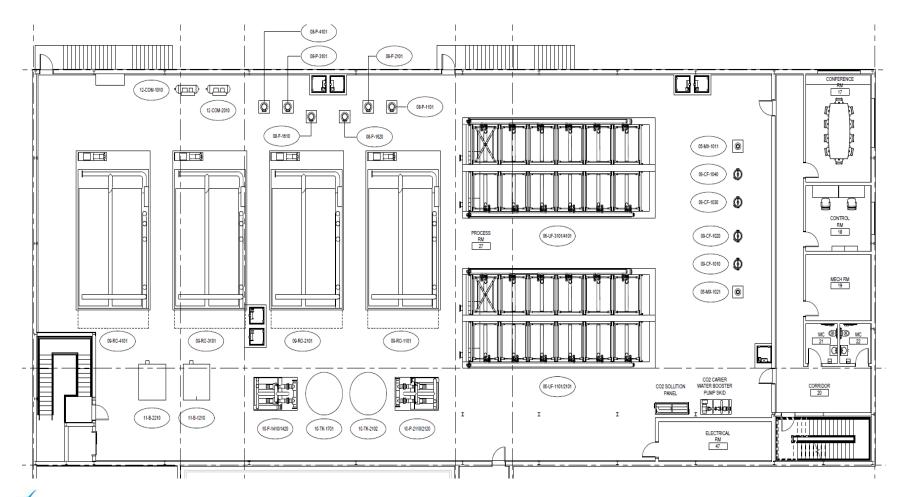
Pilot Testing

- Veolia (Suez) selected via competitive process
- Side-by-side evaluation of two (2) UF systems:
 - Immersed system (ZW500D)
 - Pressurized system (ZW1500)
- Evaluate performance of second-stage RO treating permeate from ZW500D or the ZW1500
- Compare the effect of alternative pre-treatment systems on performance of ZW500D and ZW1500
 - Enhanced Coagulation of raw water from Assiniboine River
 - Treated effluent from Ballasted Flocculation (Actiflo) process
- Establish sustainable flux rates, identify effective pre-treatment chemicals, optimum cleaning regimes and recovery, and identify any specific operating protocols.
- Pilot testing from March 19 ~ September 19, 2020 at the WTP with seven (7) key phases

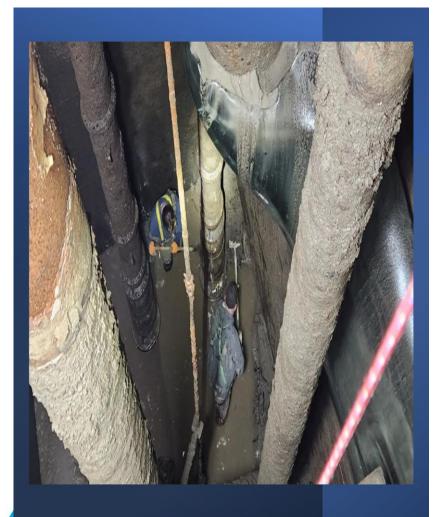


Pilot Testing – Key Conclusions

- ZW500D had better overall performance than the ZW1500 pressurized membrane system - robustness, maintaining higher long-term permeability and operating with higher instantaneous flux during production.
 - ZW500D: max instantaneous flux 35 gfd during production at 95% recovery.
 - ZW1500 : max instantaneous flux 22 gfd at 92% recovery
- Enhanced coagulation better suited than Actiflo for pre-treatment
- Throughout the six (6) month pilot study, the RO system maintained stable and reliable performance while operating on either ZW500D or ZW1500 permeate
 - Avg. flux of 13.2 gfd with a recovery of 70%
 - Avg. TOC = 0.68 mg/L (typical < 0.5 mg/L); Avg Hardness = < 2 mg/L
- Design development based on Immersed UF followed by RO



Expansion layout



Expansion Design- Upper Level

Intake and Raw Water Supply

- Existing intake issues
- Frazzle Ice spring and fall
- Ice Jams
- Debris
- Reliance on MITT to control water levels to keep intake flooded
- Regulatory Compliance
- Lack of pumping capacity and room for expansion

Intake

Proposed new location

Travelling screens

New- Owner owned Hydro Substation

Cost estimate

Original Estimate- \$80,000,000 (including detail design)

- Cost Shared 50% by Province of Mb & MWSB
- Revised cost estimate (Sept 2024)-\$96,600,00
 - No increase in funding
 - \$56,600,000 Utility debt- water rates

Timelines

- Continue on detail design throughout winter/spring
- EAP has been submitted and DFO contacted
 Heritage Resource Branch
- RFPs currently open for Membrane system and pre-treatment- likely RFP for hydro substation
- Issue tender in late summer 2025
- Construction 2-3 years

Project Contributors

- Stantec Engineering
 - Saibal Basu
 - Jamie Brewster
 - Dave Pernitsky
- Manitoba Water Services Board
 - Nathan Wittmeier
- City of Portage la Prairie
 - Jared Smith
 - WTP Operations & Maintenance Staff

Questions?

Winner of the Best of the West Water Taste Test

City of Portage la Prairie

Held in conjunction with the Western Canada Water Annual Conference and Exhibition

September 18 2024

