The H2S Challenge : From Detection to Decision Making

A Data-Driven Approach to H2S Management

05/11/2024

Agenda:

- 1. The H2S Problem in a Nutshell
- 2. Product information
- 3. Application
- 4. Case Studies

What is Hydrogen Sulfide (H₂S) ?

- Colorless gas
- "Rotten egg" odor at low concentrations
- Soluble in water & oil; acts as weak acid
- Fraction is pH dependent; at pH 7, 50% of dissolved sulfide is $\rm H_2S$
- **Total sulfide** calculation possible with pH sensor
- Dissolved H_2S easily stripped from liquid phase to gas phase
- Highly flammable and toxic
- Heavier than air

H₂S Formation in Wastewater Environments

- Anaerobic bacteria convert sulfate to dissolved H_2S
- H_2S is stripped downstream causing phase change from liquid to gas
- Oxygenation of H₂S forms sulfuric acid

What are the Risks of H₂S?

Safety

Odor Nuisances

Asset Corrosion

The Importance of Measuring H₂S in Wastewater

Pinpoint Hazards

• Identify risks in areas prone to H_2S accumulation

Prevent Complaints

complaints

• Prevent damage, failures, and operational upsets

Protect Assets

Optimize Chemical Use

 Minimize excess chemical treatment upsetting critical downstream biological treatment processes and wasting \$\$

H₂S Measurement Alternatives

- Don't Measure; Rely on customer complaints Reactive only
- Grab Sampling Only a snap-shot in time

- <u>Vapor-phase Monitoring</u> Limitations
- Liquid-phase Monitoring Preferred

Limitations of H₂S Vapor-Phase Measurements

- H₂S gas sensors monitor only H₂S fraction stripped from solution
- H₂S gas highly influenced by ventilation & accumulation; difficulty with representative samples
- Many gas phase sensors are prone to fail under high exposure applications and moist locations

Benefits of H₂S *Liquid-***P** *hase* **Measurements**

- More consistent and comprehensive readings
- Complete H₂S fraction; measured at its source
- Probes need to be designed for wet and aggressive conditions

The H₂S sensor GS1440 / GS2440

Principle of Measurement

The H₂S sensor GS1440 / GS2440

Robust, anti-fouling

membrane

Corrosion-resistant

stainless-steel

GS1440/GS2440EX Sensor H₂S Specifications

Measurement Method Sample Medium	Electrochemical Water or Air	Hazardous Certification(s)	ATEX and UKEX: II 1G Ex ia IIC T4 Ga IECEx: Ex ia IIC T4 Ga Class I Zone 0 AEx ia IIC T4 Ga Class I Division 1 Groups A-D T4 Ex ia IIC T4 Ga (-20°C ≤ Ta ≤ +60°C) (only for GS2440EX)
Range	0-5 mg/L (in water); 0-1000 ppm (in air)		
Response Time (t90)	<30 seconds	Weight	1.36 kg (3.00 lb)
Ingress protection	Max water depth 10 m (IP68)	Materials	Stainless Steel (316 L)
Operating temperature	0 °C to +40 °C (32 °F to +104 °F)	Power Options	4-20mA loop power DC power (12-28 V) Battery powered**
Relative humidity	0 - 100%	Battery Life	3 months average (Field Transmitter H2S EX)
Calibration/Secondary standard	1000 ppm (+/-) 2% gas standard	Communication Ontions	4-20 mA
Calibration frequency	1-6 months depending on use	communication options	Cellular (3G/4G) to Cloud data platform**
Cleaning	Mechanical cleaning (wipe) of sensor face for in-water installations	Warranty	12 months
Mounting options	Chain mount (in-situ), in-pipe, flow cell (bypass)	Consumables 	Calibration gas bottle; Batteries**
Sensor Diameter	48.3 mm (1.9 in)	** with Field Transmitter	
Sensor Length	240 mm (9.4 in)	Note: If the sensor is set up to measure mg/L in liquid and the liquid level drops, the sensor, then in air, it will continue to read correctly the air H ₂ S concentration;	

however, it will still display in mg/L.

The H₂S sensor GS1440 / GS2440: : Mounting Options

Caution: Hach H₂S Sensors <u>Not</u> Primary Safety Devices

- The GS1440 and GS2440EX sensors are designed to monitor H_2S concentrations in gas or liquid, they serve as process instrumentation only
- These sensors are <u>not</u> designed or certified to protect humans from exposure to unsafe levels of H_2S
- Manuals for the sensors and field transmitters contain the following warning:

ADANGER

Do not use the GS1440 or GS2440EX sensor as a safety device to identify the hydrogen sulfide concentration in an area. Obey all applicable regulations and occupational health and safety precautions before entry into confined spaces and toxic hazard environments. Get advice from the occupational health and safety department at the workplace or the government regulatory body to identify the possible hazards and safety standards.

Hydrogen Sulfide (H₂S) vs total sulfide measurement?

- H_2S is soluble in water and oil and acts as a weak acid ($H_2S/HS^2/S^2$)
- At pH 7, 50% of dissolved sulfide is H_2S
- Simplified formula when pH is around 7 (so when we neglect the S²⁻ content):

Total Dissolved Sulfide in mg/L = $[H_2S] + [H_2S] \cdot 10^{pH-7}$

• A total sulfide calculation is possible if the sensor is paired with a pH sensor.

Application Examples

- A: Liquid-phase; B: Vapor-phase just above liquid level; C: Vapor-phase at top of manhole
- Liquid-phase: Demonstrated higher sensitivity, captured peak H₂S concentration events
- Gas-phase: Struggled to capture peaks unless influenced by turbulence from pumping activity

Application Examples

- Sensors showed impact that different types of collection systems have on H₂S concentration
- Both graphs reflect liquid measurements

Benefit of Liquid Phase H₂S Measurement

- Liquid-phase: demonstrated greater sensitivity to H₂S in influent source contributions
- Gas-phase: heavily affected by external factors like turbulence and pumping cycles

H₂S Measurement Comparisons – Sulfide (Method 8131, 10254)

- Buffered with 50 mM phthalate (high buffer capacity), pH 4.01
- Parafilm over sample beaker, reducing loss of H₂S
- Converts all dissolved sulfide to $H_2S \rightarrow detectable by GS1440/GS2440EX$

Sensor calibration with sulfide standard

Sample measurement

H₂S sensor : the liquid phase measurement vs the gas phase measurement

- A gas phase sensor is the go-to technology since years
- But gas phase measurements could provide incomplete / inaccurate measurements:
 - Sensor location, sewer ventilation and turbulence are key factors influencing H_2S air concentrations
- A liquid phase measurement provides :
 - Reduced maintenance compared to gas phase measurements
 - A reliable indicator of H_2S content

H₂S sensor : the liquid phase measurement vs the gas phase measurement

Liquid-phase H₂S measurements reveal new insights

Benefits of Liquid-Phase H₂S Measurement in Dosing Strategy

End-of-Pipe Downstream Verification

- An H₂S measurement to pace ferrous sulfate chemical dosage improves system efficiency compared to a constant dosing strategy – 1.2 km pipeline.
- Use feed-forward or feed-back

The Collection System

The WWTP

1111111

- Mapping of risk areas
- Optimisation of existing mitigation strategies
- Monitoring for warranty of concrete resistance

- Headworks influent
- Primary Clarifiers
- Buffer tanks
- Odor scrubber
- Sludge thickening
- Digestion (liquid phase)

The H₂S measurement : Application Case A

Site A

Location : A tank in the effluent of a primary treatment stage

Objective : Illustrate the benefits of a liquid phase measurement / the limitations of a gas phase measurement

The H₂S measurement : Application Case A

 \Rightarrow Gas phase measurements can under-represent the scope of an H₂S problem

The H₂S measurement : Application Case B

Site B

A discharge well after force main before a curative treatment of H₂S with ferrous sulfate

A site to illustrate the benefit of a dosing strategy in relation to the H_2S concentration in the liquid phase

Application Case B : The use of H₂S liquid phase measurement for reagent dosing

 \Rightarrow H₂S is a dynamic variable (dependent on pump operating parameters, seasons, temperatures, flow rate and precipitation...) and as the composition of the effluent changes, a constant reagent dosing cannot completely neutralize the effect of H₂S peaks

Results Site B : The use of $\rm H_2S$ liquid phase measurement for reagent dosing

 \Rightarrow A dosing strategy based on an H₂S measurement improves system efficiency while using 50% less chemical compared to a constant dosing strategy.

Conclusion

- Liquid-phase H2S monitoring improves the operator's ability to:
 - ✓ Locate H2S hotspots
 - ✓ Continuously monitor H2S concentrations in networks and wastewater treatment plants
 - ✓ Optimize and automatically control H2S mitigation strategies
- Limited Maintenance:
 - ✓ No consumables
 - ✓ On-site calibration
 - ✓ Several years of service life

Thank You

Sean Naaykens snaaykens@hach.com

Mike Green mgreen@hach.com