Confidential - Company Proprietary

Presented by: Ashley Boulter Territory Manager – Canada USP Technologies

CWWA – NWWC Winnipeg, MB 11/5/2024

It Doesn't Have to Stink: Wastewater Odour Control 101

Agenda:

- Hydrogen Sulfide Generation
- Treatment options

• Mercaptans/Reduced Sulfur Compounds

What does that mean for YOU?

Why Spend \$\$\$ to Control H₂S?

Four major impacts of H_2S

- 1. Dominant nuisance odour (esp. collection systems)
- 2. Worker safety / health risks
- 3. Infrastructure corrosion
- 4. Treatment process impairment

H₂S Toxicity Spectrum

Lethal Spectrum of H_2S

'Rotten Egg' Odour

OSHA Limit (Time Weighted Average)

Threshold of Serious Injury + Loss of Sense of Smell

Imminent Life Threat

Immediate Collapse with Respiratory Paralysis

Aqueous vs. vapour Levels

Typical

Correlations

Direct correlations between liquid and vapor levels are not possible. The following factors increase vapor levels for a given liquid level …

> High turbulence Poor ventilation Low pH High temperature

Effect on H_2 S on the life expectancy of concrete pipes

H₂S Corrosion Effects

Prevalence of the Hydrogen Sulfide Problem

(EPA Report to Congress, 1992)

- Not limited to warm climates
- Can reduce infrastructure life from 50- 100 years to <10 years
- > 35% of cities surveyed report sewer collapses, 75% of which are attributed to sulfide-induced corrosion
- 60-70% report corrosion problems at the treatment plant

Questions to ask yourself:

• What are my goals?

- o Mitigate Odour Complaints
- o Infrastructure Protection
- o Worker Safety
- o Treatment process improvement
- What does success look like?
- What type of treatment to implement?

Where are my "Hot-Spots" ?

Everything is connected

What's My Approach?

Confidential - Company Proprietary

How Are You Going to Measure Performance?

• Vapour Monitoring

• Aqueous Monitoring

- Remove H2S / Odours from the air before it is released to the atmosphere.
- Relatively inexpensive
- H2S still present in pipeline / wet-well, etc.

Point Source Odour Management

Vapour Phase Odour Control:

• Can the area be isolated and enclosed ?

Multiple Point Odour Control

- Do multiple odour hot-spots exist?
	- Several manholes along an interceptor
	- Gravity lines with siphons
	- Several pump stations in series
- What's going on downstream?
	- Durational odour control needs
	- Impacts to wastewater treatment processes

Connecting Collection System to WWTP Water Quality Impact

Choice of odour Control in the collection system determines the water quality delivered to the plant:

Nitrates

Mag pH ↑ Sulfides ↑ (in Solution) Struvite ↑

<u>on</u> $RP \downarrow$ FAs ↑ ulfides $\bm{\downarrow}$ "Regenerable"

ORP ↑ Soluble BOD ↓ VFAs ↓ Sulfides ↓ N-Load ↑

Control Mechanisms

Inhibits septicity Promotes bio-oxidation of sulfide & organic odours

- Simple feed systems
- *Historical* benchmark for "non-hazardous" odour control

Disadvantages

Advantages

- Reaction time requires several hours
- Consumes Volatile Fatty Acids & rbCOD
- May stimulate biogrowth / floating solids
- Can contribute to nitrogen load at plant
- May not be cost-effective for long durational control or high BOD/temperature lines

- Location JEA, Jacksonville, FL
- Technology Nitrate, dosed in neighborhood on Segovia Avenue
- Results Gaseous H_2S went from 245 average & 600 peak ppm to 45 average & 160 peak ppm at downstream Stanford Wetwell control location, minimizing odour complaints

Nitrate Case Study

Advantages

- Extensive history / commonly used
- Effective for long duration control
- Assists in phosphate / struvite control
- Not affected by oxygen uptake rates

Disadvantages

- Contributes to solids loading
- Can deplete alkalinity & add salinity
- Does not destroy sulfide
- Overdosing may leave deposits on pipes/equipment

Control Mechanism(s)

Ferrous salts precipitate sulfide Ferric salts oxidize & precipitate sulfide

Iron Salts

-
- Technology Ferrous chloride, dosed at 48th Street & Alta Vista
- **Results** Significantly reduced sulfides in collection system and decreased odour complaints

Advantages

- Relatively short reaction time (5-20min) without catalyst
- Adds D.O. which inhibis septicity & promotes bio-oxidation
- Efficient and cost effective H_2S oxidant
- No troublesome by-products
- Selective for sulfide oxidation
- Simple feed systems

Disadvantages

Control Mechanisms

• Limited durational control, < 3 hours

Oxidizes sulfide Adds dissolved oxygen Regenerates iron (oxidizes FeS)

Hydrogen Peroxide

- 150.0
- 140.0
- 130.0
- 120.0
- 110.0
- 100.0
- 90.0
- 80.0
- 70.0
- 60.0
-
- 50.0
- 40.0
- 30.0
-

- Location Walnut Creek Lift Station Raleigh, NC
- Technology Hydrogen peroxide, dosed before Archimedes screws
- Results Improved collection system sulfide and odour control with reduced amount of iron salts while reducing alum demand for phosphorus removal

Hydrogen Peroxide Case Study

Walnut Creek LS H2S 9/30-10/7, 2008 (Untreated vs 175 GPD H2O2)

20081007_OL05058779_01Raleigh Walnut PS: Session 1

- Low-hazard buffered iron solution:
	- \circ Active Ingredient: Ferrous (Fe⁺²) 13%
	- \circ pH: 4 ±0.5 @20°C, 100.0%

1/10,000th acidity of standard FeCl₂

- o Specific Gravity: 1.330 @ 20°C
-

o Density: 11.1 lbs/gal

- Lower hazard rating than calcium nitrate
- Equal performance to Ferrous Chloride (FeCl₂)
- Field applications consistently show superior performance to Calcium **Nitrate**
	- 50% to 75% less product required for equal performance

What is SulFeLox®?

What is SulFeLox® (Cont'd)

- Equal performance to $FeCl₂$ w/out pH suppression
	- \circ Less H₂S volatilization & improved FeS binding efficiency
	- o Superior durational control
	- \circ Available for PRI-SC $^\circ$ regeneration and downstream H₂S control
- Ideal for hazard sensitive dose sites
	- o Lower hazard level than calcium nitrate
	- \circ Lower volumes = fewer deliveries

- Complimentary to WWTP processes
	- o Carbon preservation
	- o Positioned to leverage PRI-TECH® applications
		- Headworks and plant wide (biosolids) odour and corrosion control
		- **·** Improve P-removal
		- Help with Struvite control
		- **Improve dewatering / reduce disposal costs**
- Eliminates matting / scum build-up in wet wells or 'floating' of clarifiers due to N2-off-gassing

What is SulFeLox®(Cont'd)

-
-
- Equal performance or better at pts 1&2
- Reduced peaks at pts 1&2
- 6x removal performance at pt 3
- 25% SFL volume required

SulFeLox® Case Study

Background: Entire line in Southern California community with limited dose sites and history of odour complaints, especially at sample points 2 and 3. Dosing calcium nitrate to control at sample point 3 has been cost-prohibitive. SulFeLox[™] durational control achieves better results with lower dose rates.

Confidential - Company Proprietary

Iron Binds H2S

Iron & H2S Form FeS

2 Reactions

- H_2O_2 Addition Oxidizes FeS to elemental Sulfur (inert) & $Fe²⁺/Fe³⁺$
- Fe catalyzes & accelerates H_2O_2 reaction w/ H2S

Peroxide Regenerated Iron (PRI)

Confidential - Company Proprietary

PRI-Tech[™] in Practice

To get the most out of your iron use…

USE…… RE-USE…… and RE-USE again with PRI-TECH

Iron is selective to binding with sulfide – can be overfed upstream & will carry through until sulfides appear

 $FeCl₂$ Dosing

PRI-Tech Case Study – City of San Diego, CA

Outcome in Sewer

Control Mechanisms Controls sulfide through preventing off-gassing Suppresses biofilm activity Alkalinity (Mg(OH)₂, Ca(OH)₂, Carbonate)

- Provides alkalinity
- May prevent solubilization (at high pH)
- Local/limited biofilm suppression

Impact to WWTP

- Delivers alkalinity
- Drives aqueous sulfide downstream (air demand, settleability impacts)
- Increased potential for scale (struvite)

- Select for and deliver
	- communities to enhance a desired uptake outcome
	- (sulfide, VFA)
- Complimentary to other treatments strategies?
- FOG control?
- TBD!
- Impact to WWTP Depends!

Outcome in Sewer

Bioaugmentation

Control Mechanisms

Introduces alternative biology to improve sulfide control (or other goal?) through biological uptake

Point Source or Vapour Odour

- Activated Carbon
- Biofilter
- Bioscrubber
- Chemical Scrubber
- Vapour fogging

Control Mechanisms

Convert odourous compounds to non-odourous salts either by acid/base reaction or oxidation

Vapour Phase: Chemical Scrubbers

Disadvantages

1. Acclimation period (up to a month) 2. Biological activity is somewhat susceptible to process fluctuations 3. Longer contact time required for odor compounds other than H₂S 4. Low pH blowdown

water, nutrients

Control Mechanisms Growth of biological organisms on media and convert odourous compounds by metabolic processes

Vapour Phase: Biological Treatment Systems

Disadvantages

1. Periodic media replacement can be labor and equipment-intensive process

2. Rapid breakthrough of media depending on odor loading 3. Difficulty removing compounds other than H₂S (layered specialty media)

Adsorption of odourous compounds onto active media (Virgin Carbon, Activated Carbon, Impregnated Media)

Vapour Phase: Adsorption Systems

Control Mechanisms

Disadvantages

- 1. Less commonly used historically
- 2. Less proven technology
- 3. Response time to fluctuations in odor
- 4. Potential for excess ozone in exhaust stream

Control Mechanisms

Generate highly reactive forms of oxygen (O_3, Q_1) O_2^* , OH * , O_2^* , O * to oxidize odourants

Vapour Phase: Ionizing Systems

Confidential - Company Proprietary

Thank You

Ashley Boulter Territory Manager – Canada USP Technologies Vancouver, BC 403-389-7770 aboulter@usptechnologies.com

Ian Watson Technology Development Manager USP Technologies Paso Robles, CA 760-685-1618 iwatson@usptechnologies.com

