

SulFeLox® Low Hazard Iron Solution

Presented by: Ashley Boulter Territory Manager – Canada USP Technologies

CWWA – NWWC Winnipeg, MB 11/6/2024

Ashley Boulter Territory Manager – Canada

USP Technologies is the leading provider of full-service chemical treatment programs for municipal and industrial water and wastewater treatment applications

We offer the following solutions for municipalities:

Hydrogen Sulfide Control

- Collection Systems
- Headworks
- Primary Clarifiers
- Thickeners
- Digesters
- Dewatering

Plant Optimization

Starts in Collection System

- Phosphorus Management
- Struvite Control
- Enhanced Clarification
- Dewatering
- Biogas Production
- Supplemental D.O.
- Disinfection

SulFeLox® Product Overview

Low-hazard buffered iron solution:

SulFeLox®	Calcium Nitrate	Magnesium Hydroxide
100	100	0 1

Active Ingredient: Ferrous (Fe²+) - 13% pH: 4 ± 0.5 @20°C, 100.0

4 ±0.5 @20°C, 100.0%

1/10,000th acidity of standard FeCl₂
Specific Gravity: 1.330 @ 20°C

Density: 1.330 @ 20 c11.1 lbs/gal

- Equal performance to Ferrous Chloride (FeCl₂)
- Municipal applications show superior performance to Calcium Nitrate
 - 50 to 75% less product required for equal performance

Why SulFeLox®?

Nitrates

↑ ORP

↑ N-Load

↓ Soluble BOD

↓ VFAs

↓ Sulfides

↓ Alkalinity

Mag

↑ pH/alkalinity

↑ Struvite Formation Dissolved Sulfide↑↓ (neutral)

Vapour H2S↓

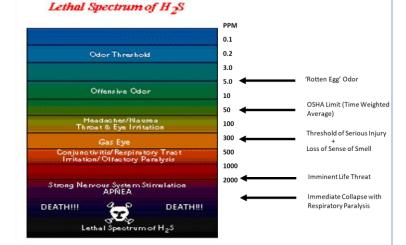
<u>Iron</u>

↑ VFAs

↑ Regeneration Potential (w/ H2O2)

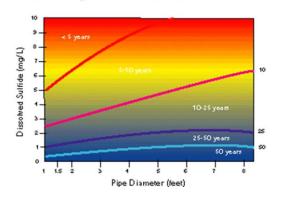
↓ ORP

↓ Sulfides



Wanted to provide a low hazard option with the benefits of iron

Disruptive Nature of H₂S


Toxicity Spectrum (Safety and Odour)

- Nuisance odours = community dissatisfaction
- High H₂S levels = worker safety concerns with potentially fatal consequences

Corrosion and Infrastructure Damage

Effect on H₂S on the life expectancy of concrete pipes

- Shortened infrastructure life
 - Pipe and manholes corrosion
- Increased service and maintenance costs
 - Line repairs
 - Line break cleanup
 - Pump station corrosion

Plant Process Disruptions

- Increased primary settling costs
- Increased polymer demand
- BNR Interference
- Lower cake solids / higher solids disposal costs
- Digester fouling and inefficiency
- Increased plant operating costs (aeration, power costs)

Equal performance to FeCl₂ w/o pH suppression

Less H₂S volatilization & improved FeS binding efficiency

Superior durational control

Available for PRI-SC® regeneration and downstream H₂S control

Ideal for hazard sensitive dose sites

Lower hazard level than calcium nitrate

Lower volumes = less deliveries

Complimentary to WWTP processes

Carbon (VFA) preservation

Positioned to leverage PRI-TECH® applications

Headworks and plant wide (biosolids) odour and corrosion control

Improve P-removal

Struvite control

Improve dewatering / reduce disposal costs

Use: Precipitates sulfide

Equal performance to FeCl₂ w/o pH suppression

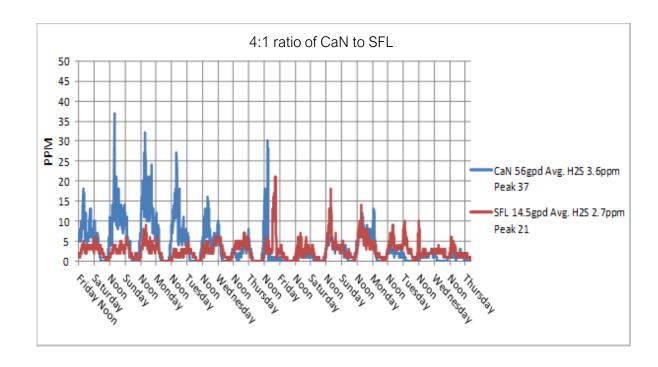
Less H₂S volatilization & improved FeS binding efficiency Superior durational control

Available for downstream PRI-SC® regeneration and H₂S control

Ideal for hazard sensitive dose sites

Similar hazard level to calcium nitrate Lower feed rates = fewer deliveries

Complementary to WWTP processes

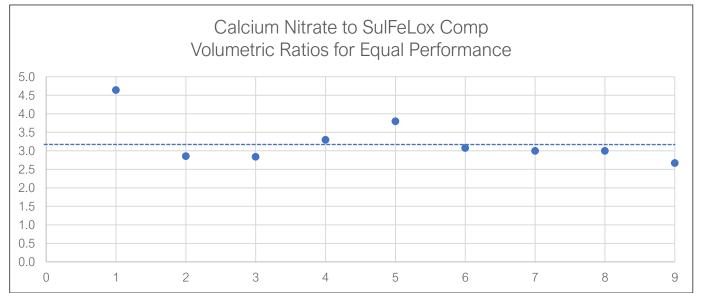

Promotes carbon (VFA) production for Biological Nutrient Removal processes

Enables in-plant PRI-TECH® applications

Enhances plant-wide solids separation and odour/ corrosion control

Improves P-removal (and struvite control)

Improves dewatering efficiency and reduces disposal costs



Best Fit Applications – Collection Systems

- Why collection systems?
 - Low hazard Suitable for residential communities and commercial districts
 - Good replacement for CaN use less chemical and require less frequent deliveries

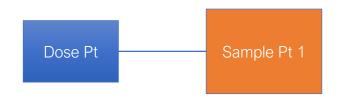
SulFeLox® to Calcium Nitrate Replacement Ratios

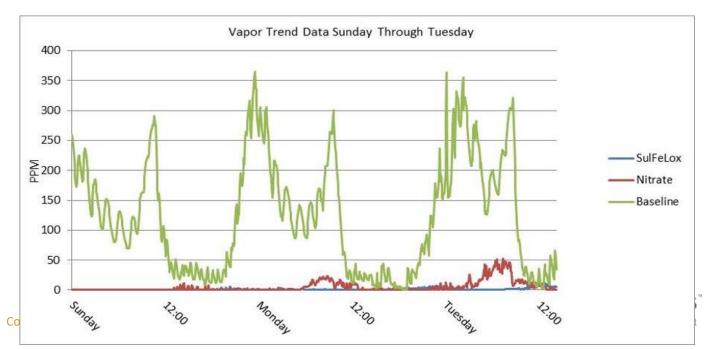
Avg ratio: 3.2

Background:

- Project site in Southern Cal is treated with 50 gpd of Calcium Nitrate.
- Line is small and customer is looking for savings preferably with a low hazard class product (though allowed testing of standard FeCl₂).
- All options provide good control, but FeCl2 and SulFeLox® require <50% of dose rate.

	Avg	Peak	Est Gal/yr
Calcium Nitrate – 50 gpd	0.9 ppm	22 ppm	18,250
SulFeLox tm – 23 gpd	1.3 ppm	9 ppm	8,400
Ferrous Chloride – 23 gpd	1.6 ppm	32 ppm	8,400


1.5 miles from Dose Pt


Background:

- Project site south of Atlanta, GA was untreated and USP tested SulFeLox® and Calcium Nitrate.
- Site experienced very high H2S at FM discharge resulting in dangerous H2S levels (>590 ppm), odour complaints and severe corrosion.
- SulFeLox® provided better performance at 1/3 dose of nitrate.

- <100k gpd
- 8 18 hrs retention time

	Avg	Peak	Est Gal/yr
Baseline (no treatment)	93 ppm	590 ppm	n/a
SulFeLox® – 10 gpd	1 ppm	12 ppm	3,600
Calcium Nitrate – 30 gpd	5 ppm	52 ppm	10,800
Re-baseline (post testing)	112 ppm	365 ppm	n/a



Case Study 3: City of Bakersfield

Background: Nitrate Program & Odour Control Study

- Existing program with 9 CN sites
- Buxton Hill Line controlled to 50 ppm H2S peaks
- Buena Vista line not well controlled with 140 ppm average, peaks to 500 ppm
- Significant odour complaints from Buena Vista PS and surrounding areas

Carollo Study:

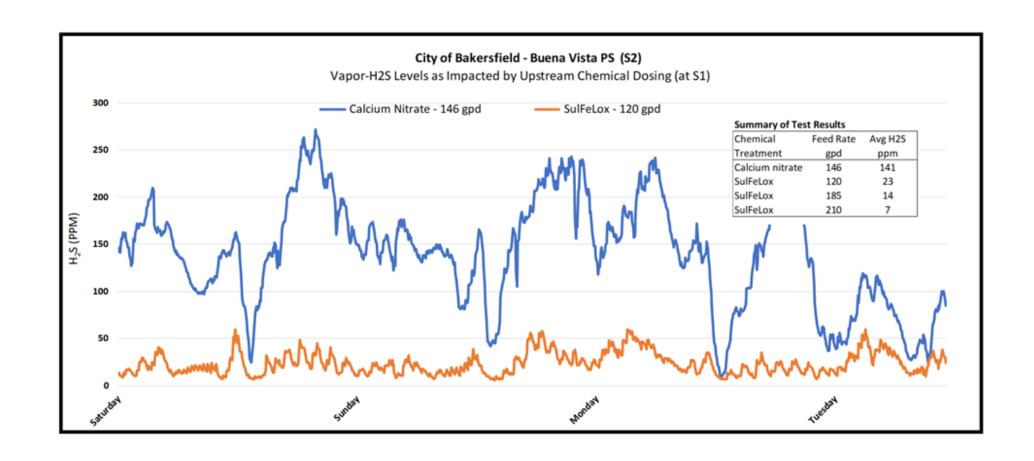
- City currently spends \$1M/yr on Calcium Nitrate (\$600K/yr Buxton Hill Line, \$400K/yr BV)
- Recommended FeCl₂ 340 GPD between two sites on Buxton Hill Line in lieu of 554 GPD of CN
- No recommendation on BV line due to lack of available data on flows
- Projected overall savings of \$355k/yr by switching program to iron (based on 2019 pricing)

 Confidential Company Proprietary

Bakersfield Cont.

- City decided that resolving odour complaints at BV was priority
- Attempted to control with calcium nitrate but were unable.
- Highest attempted CN dose was 336 GPD total at three sites (Rushmore, Romero, Buena Vista) achieved 80 ppm avg H2S with peaks to 300 ppm H2S at BV
- Estimated CN demand for to adequately control at BV PS was >500 GPD
- Significant nitrate volume to Romero PS to prioritize BV odours proved ineffective, and City reverted to 140 GPD dose while seeking alternative solution
- Decided to trial SulFeLox® at Romero PS, to begin spring 2021
- Study goal was target of <25 ppm H2S avg, peaks <50 ppm

Bakersfield Results

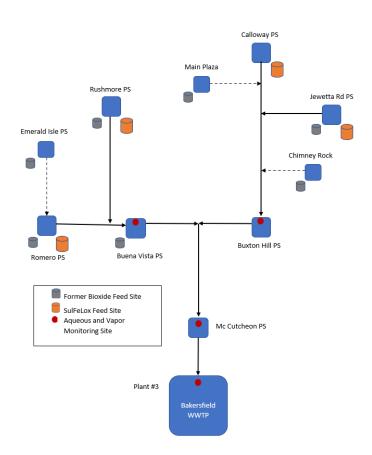

Romero PS to Buena Vista PS

	Daily Feed	Water Temp.	Peak Vapor H ₂ S	Daily Average Vapor H₂S	Daily Average Vapor H₂S
	GPD	Deg. F	PPM	PPM	% Reduction
Calcium Nitrate (April 8 - 20, 2021)	146	77	457	146	0%
SulFeLox (April 20 - May 16 , 2021)	130	79	74	25	83%
SulFeLox TM (May 18 - 21, 2021)	195	79	65	17	88%
SulFeLox [™] (May 22 - June 8, 2021)	210	82	31	7.3	95%
SulFeLox™ (June 9 - June 15, 2021)	130	92	52	14	90%
SulFeLox [™] (June 15 - June 21 , 2021)	100	92	72	25	83%
No Chemical (June 21 - June 28, 2021)	0	92	307	136	
No Chemical (June 29 - July 7, 2021)	0	92	645	195	

- H₂S reduced by 83% as compared to nitrate at budget-managed dose rates
- Estimated nitrate to achieve <10 ppm H₂S 550 − 600 gpd vs 210 gpd SulFeLox[™]
- Downstream H₂S reduced from average 750 ppm to 250 ppm
- Line conditioning played significant role in reducing overall SFL demand
- Lasting conditioning effect (untreated June performance > nitrate performance in April)

Bakersfield: Buena Vista PS

Bakersfield: Downstream Impact



- McCutcheon PS downstream with 12.5 MGD additional flow (4X BV Flow)
- Steady downtrend in H2S at McCutcheon due to biofilm imbedded Fe and Fe solids inventory building
- Gradual trend reversal with cessation of Fe feed

Conclusion

- Demonstration completed June 21, 2021
- Calcium Nitrate program at Romero PS restarted July 2021
 could not meet 25 ppm performance target
- City requested a full system survey and proposal for SulFeLox®
- Full-scale SulFeLox® program delivered March 2022 with implementation at 4 sites
 - Romero PS (120 GPD)
 - Rushmore PS (50 GPD)
 - Jewetta PS (120 GPD)
 - Calloway/Main Plaza (180 GPD)
- Final implementation eliminated 5 nitrate feed sites
- Overall program savings of >\$300K/yr vs Calcium Nitrate (33%)

What else can be done with SulFeLox®?

Supercharge SulFeLox® through different technologies

- Regenerate with PRI-TECH® in collections for headworks benefits
- Natural aeration to extend beneficial use
- Forced aeration to prevent magnetite fouling
- Use with alkaline to improve efficiency

Thank You

Ashley Boulter
Territory Manager – Canada
USP Technologies
Vancouver, BC
403-389-7770
aboulter@usptechnologies.com

lan Watson
Technology Development Manager
USP Technologies
Paso Robles, CA
760-685-1618
iwatson@usptechnologies.com

