MWWA 2024

Remove more phosphorus. Produce less sludge.

Presented by: Jordan Van Shane

Overview of ClariPhos

- A new coagulant technology made with rare earth elements, **lanthanum** and **cerium**
- Has a high affinity for phosphorus allowing it to achieve ultra low levels (<0.07 ppm) at only a 1:1 molar ratio
- No tertiary filtration equipment required and minimal associated ongoing operating costs
- Offers a simple, affordable way to reduce phosphorus in treated effluent

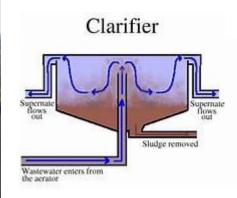
Municipalities are faced with the costly burden of upgrading their treatment plants to meet stringent water quality criteria for phosphorus

- Tertiary filters, increased chemical costs & sludge handling requirements
 - Major facility renovations and upgrades = \$\$\$
 - Energy and operational costs would also skyrocket to support new equipment and processes
- Estimates to upgrade WWTPs to meet tough phosphorus limits range from **\$5,000 to \$45,000** per kg of P removed

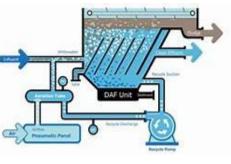
ClariPhos offers capital and operational cost savings

Wastewater plants that have switched to ClariPhos have realized significant savings in several areas:

- Eliminate capital and annual operating costs of adding tertiary filtration systems
- Lower sludge production by up to 50%
 - Enhance clarifier performance and capacity
 - Improve sludge dewaterability by up to 40%
- Reduced maintenance costs compared to alternative coagulants
 - Doesn't stain or discolor facility structures/equipment
 - No pH adjustment necessary
 - Safer, it is ~100x less acidic than Alum/Ferric



Where can ClariPhos be used?



DAF

Summary of Key Benefits

Conventional WWTP

- Improved clarifier performance
- Reduce or eliminate pH adjustment
- Reduced sludge processing costs
- No staining (UV)
- Prevent struvite

Membrane Bioreactors

- Stable pH for optimized bacterial proliferation
- Reduce or eliminate pH adjustment
- Reduced membrane cleaning

Lagoons

- Rapid Settling
- Reduced TSS in effluent
- Less sludge accumulation
- Stable pH for optimized bacteria proliferation

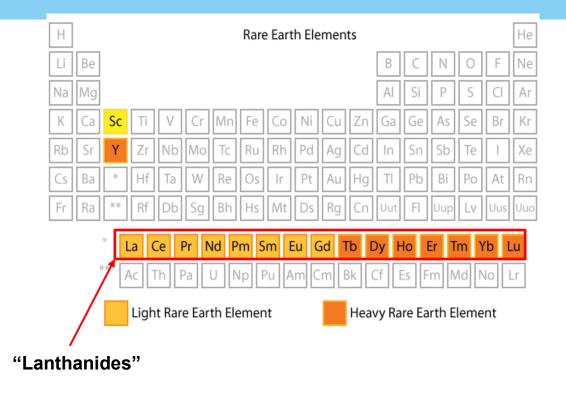
Industrial Clarifiers

- Rapid Settling
- Improved dewatering (filter press etc.)
- Reduce / eliminate pH adjustment
- No staining of infrastructure
- Achieve ultra-low phosphorus limits without expensive capital investment or tertiary treatment
 - **Reduce coagulant consumption and maintenance costs**

BISHOPWATER

🔺 +1 (343)-361-0463

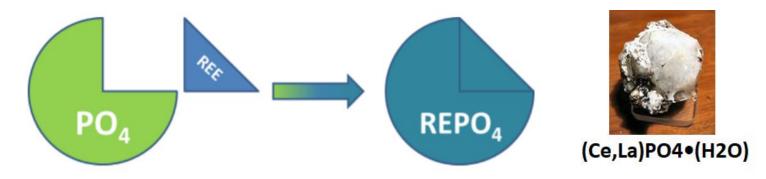
Rare Earths in ClariPhos: Lanthanum and Cerium


ClariPhos is a salt solution of lanthanum and cerium.

Lanthanum (La) and cerium (Ce) form strong, crystalline bonds with phosphate, making them ideal for wastewater treatment applications.

First: What are Rare Earth elements?

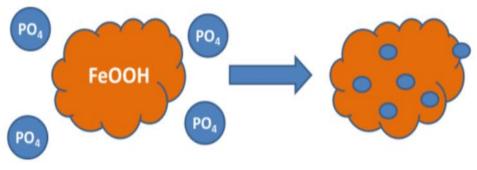
- 17 RE elements (not all that 'rare')
- All have similar properties—often found complexed together in nature
- Very difficult to separate from one another once complexed


🖀 +1 (343)-361-0463

ClariPhos - How does it work?

ClariPhos Phosphorus Removal Mechanism

- La and Ce form strong mineral complexes with **phosphorus**
- They bind **specifically with P** to create a **dense**, **insoluble precipitate** that **rapidly settles out of solution**


ClariPhos preferentially targets phosphorus to form an insoluble rhabdophane precipitate

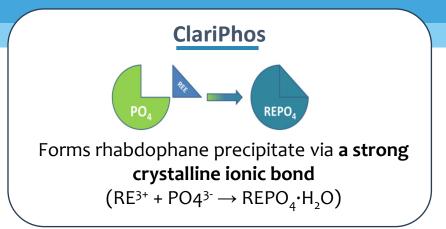
How does it compare to traditional precipitation methods?

Iron and aluminum salts form an amorphous "cloud" in solution

- Fe and Al-based products work by forming hydroxide intermediates
- Phosphate weakly adsorbs onto these surfaces via non-specific interactions

PO₄ only adsorbs to the surface of Al or Fe intermediate

Result: High chemical dose required to get low effluent P!



WWW.BISHOPWATER.CA

ClariPhos vs Iron and Aluminum Salts

- Forms irreversible ionic bonds
- Preferentially reacts with phosphorus
- Achieves 1:1 molar ratio of La/Ce:PO4
- Less chemical sludge is produced

Iron and alum-based products

Form amorphous "cloud" in solution which only **adsorbs** P onto floc

- Adsorption via surface chemistry
- Requires approx. **5:2 ratio of Fe/Al to P**
- High sludge production

ClariPhos creates a stronger bond to P than ferric or alum, meaning less chemical is needed and less sludge is produced

🕋 +1 (343)-361-046**3**

Molar Dose Ratios

-FeCl3

-AICI3 (as AI)

ClariPhos

PAC (as Al)

1.0

WWW.BISHOPWATER.CA

Molar Ratios of Coagulants Versus Final Concentration P 1 mg/L PO₄-P Starting Concentration

-ACH (as Al)

 \rightarrow Fe2(SO4)3 (as Fe) \rightarrow Alum (as Al)

INFO@BISHOPWATER.CA

At 0.05 mg/L P, the required **RE:P dosage** remains at 1.

BISHOPWATER

Even below 0.05 mg/L, the required molar ratio is still significantly lower than Fe and Al. horus 0.2 0.1 mg/l **Phos** 8 2 6 **RE:P molar ratio (1-2)** Molar Ratio (RE, Fe, Al):P

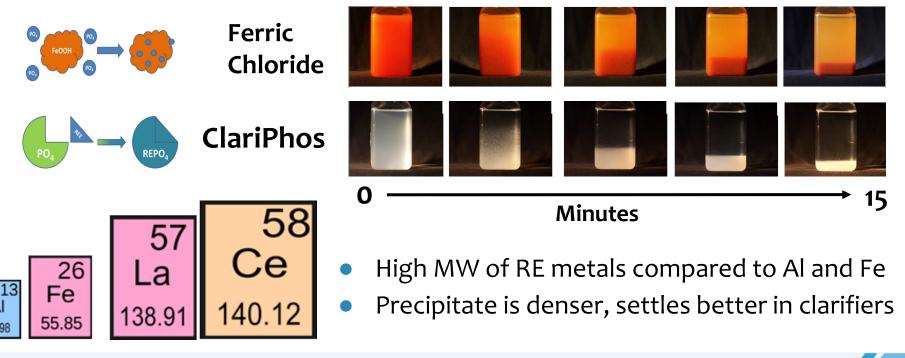
+1 (343)-361-0463

10

Molar Dose Ratios - Impact on Sludge Formation

Rare Earth coagulant will produce up to **51% and 34% less sludge** than the amount produced by Fe and Al addition, respectively.

Approximately **40%** of a wastewater treatment plant's total annual operating cost is spent on **solids management**.


A Report to the Legislature on Wastewater Treatment Sludge and Septic Management in Vermont July 16, 2016

+1 (343)-361-0463

High settleability

Rare Earth metals enable rapid settling — even for fine particulates

BISHOPWATER

*** +1 (343)-361-0463**

ClariPhos enables clarifiers to operate more efficiently

Rare Earth metals allow for rapid settling of even fine particulates

+1 (343)-361-0463

Table 2. Molecular weights and density of solids generated fromcoagulant addition

Precipitate formed	Molecular Weight of Metal (g/mol)	Density of Solids (g/ml)		
Aluminum hydroxide Al(OH) ₃	27	2.42		
Aluminum phosphate AIPO ₄	27	2.57		
Iron phosphate dehydrate FePO ₄ ·2H ₂ O	55.85	2.87		
Iron hydroxide oxide Fe(O)OH	55.85	3.4-3.9		
Rare Earth phosphate REPO ₄ ·H ₂ O	138-175	4		
Rare Earth hydroxide RE(OH)3	138-175	~4.3		

Conventional coagulant

- Heavier ClariPhos floc settles about 2x faster than conventional coagulants
- Faster settling enables clarifiers to operate more efficiently

WWW.BISHOPWATER.CA

Reduced carryover of suspended solids

BISHOPWATER

• Eliminates need for costly tertiary filtration systems

After switching to ClariPhos

ClariPhos- bye bye, struvites!

ClariPhos inhibits struvite formation

- ClariPhos has a much stronger bond with soluble P, meaning that it is not released in <u>digesters</u>
 - Conventional coagulants release soluble ortho-phosphorus, leading to struvite precipitation
- Struvite formation is prevented, improving operations and reducing maintenance costs

Top: 18 days of operation without ClariPhos struvite control. **Bottom:** Pump after 1 year of operation with ClariPhos struvite control.

ClariPhos improves dewaterability

Example: 2.9 MLD plant

Using ferric:

- Belt press ran 8hrs/day, 5 days/wk
- Average 15% solids

Using ClariPhos:

- Belt press runs 8hrs/day, 1 day/wk = 80% reduction
- Average 21% solids = 40% improvement
- 20 yd containers of sludge sent to landfill decreased from 75 to 31 annually = <u>59% reduction</u>
- \$70,000 annual savings

🕋 +1 (343)-361-046**3**

ClariPhos sludge is easy to handle

	RE 100	RE 300				
% active ingredient (w/w)	33%	40.5%				
Density (lbs/gal)	11.9	13.2				
pН	3 - 4					
Freezing Point	-40	-40°C				

- Low freeze temperature -40°C (-40°F)
- Minimizing "gelling" at cold temperatures
- Eliminates heated storage or pipe heat tracing
- Can be stored outdoors in colder climates

👕 +1 (343)-361-0463

ClariPhos sludge is easy to handle

ClariPhos sludge can be safely land applied as soil amendments

- Rare earths have been shown to have low toxicity and low environmental impact
 - Municipal plants using ClariPhos repeatedly pass whole effluent toxicity testing at 100% effluent concentration
- Rare earth metals are not bioavailable to crops and do not add foreign metals to the soil

Hazardous material classification (Scale of 0-4)

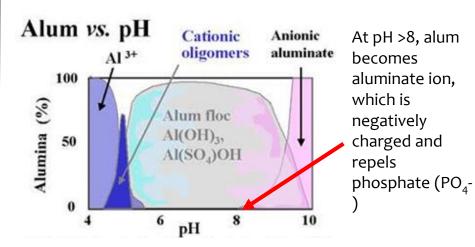
🕋 +1 (343)-361-0463

Readily replaces conventional coagulants

- Low corrosivity -- ClariPhos is compatible with existing equipment
 - Simply replace Al or Fe coagulants with ClariPhos
- Small adjustments to dose location or mixing may be beneficial to ClariPhos performance

WWW.BISHOPWATER.CA

ISHOPWATER


No pH adjustment or alkalinity dosing is required

• ClariPhos (pH 3-4) is **100x less acidic** than Fe or Al coagulants (pH 1.5 - 2.2)

- Strong ionic bond requires 3 5x less chemical (1 molecule of ClariPhos per molecule of P removed)
 - = 300 to 500 times less acid added, reduced impact to alkalinity

- ClariPhos doesn't require alkalinity to precipitate phosphorus
- ClariPhos speciates at a higher pH, meaning that it will still be effective in high pH wastewaters (up to 11)

👕 +1 (343)-361-0463

Case Study - MBR Plant

- MBR system, 30-40 m3/day
- DAF pre-treatment

BISHOPWATER

- High levels of FOG, BOD, TSS and P
- Inconsistent results with alum

WWW.BISHOPWATER.CA

+1 (343)-361-0463

• Excess foaming, large pH swings, biological upsets

After Switching to ClariPhos

- ClariPhos dosage is $\frac{1}{4}$ to $\frac{1}{5}$ of Alum.
- Eliminated a tertiary treatment system
- Eliminated pH adjustment
- Eliminated need for polymer dosing
- Less sludge
- Outside storage during cold months
- Easier/safer handling to the running tank
- Overall, maintenance for the WWT plant was reduced significantly.
- Cost Savings chemicals and plant maintenance

Case Study #2 - Biofilter System

• 20 m3/day max.

BISHOPWATER

- Sodium aluminate coagulant
- Inconsistent treatment results
- Carryover of solids caused media fouling
- High sludge production, frequent pump outs

ClariPhos restores performance

- Consistently meeting P target
- Significantly less sludge
- No carry over of solids or fouling of media

Case Study #3 - Avoiding Costly Upgrades

- 1.25 MGD MBR (Kubota)
- Issued new TP limit of 0.07 mg/L (May - Sept), 0.35 mg/L (Oct - April) starting May 2025
- No coagulant currently used
- Evaluated several options

MBR - 20 Year Life Cycle Cost Comparison

ltem	Scenario 1: Alum and Tertiary Filter		Scenario 2: RE coagulant and Tertiary Filter		Scenario 3: Alum in MBR		Scenario 4: RE coagulant in MBR	
sitework	\$	110,000.00	\$	110,000.00	\$	30,000.00	\$	30,000.00
building	\$	800,000.00	\$	800,000.00	\$	420,000.00	\$	420,000.00
chemical feed equipment (installed)	\$	100,000.00	\$	100,000.00	\$	110,000.00	\$	110,000.00
filtration equipment (installed)	\$	1,330,000.00	\$	1,330,000.00	\$	-	\$	-
Electrical/Controls	\$	260,000.00	\$	260,000.00	\$	80,000.00	\$	80,000.00
general conditions (10%)	\$	260,000.00	\$	260,000.00	\$	70,000.00	\$	70,000.00
contigency (30%)	\$	860,000.00	\$	860,000.00	\$	220,000.00	\$	220,000.00
contractor OH& P (15%)	\$	560,000.00	\$	560,000.00	\$	140,000.00	\$	140,000.00
Construction subtotal	\$	4,280,000.00	\$	4,280,000.00	\$	1,070,000.00	\$	1,070,000.00
soft costs (engineering and CMS: 22%)	\$	950,000.00	\$	950,000.00	\$	240,000.00	\$	240,000.00
total project cost	\$	5,230,000.00	\$	5,230,000.00	Ś	1.310.000.00	Ś	1.310.000.00
annual chemicals	\$	30,000.00	\$	41,000.00	\$	171,000.00	\$	83,000.00
annual electricity	\$	4,000.00	\$	4,000.00	\$	1,000.00	\$	1,000.00
annual parts	\$	19,000.00	\$	19,000.00	\$	7,000.00	\$	7,000.00
annual labor	\$	9,000.00	\$	9,000.00	\$	3,000.00	\$	3,000.00
annual additional sludge disposal	\$	2,000.00	\$	1,000.00	\$	14,000.00	\$	3,100.00
total 20 year life cycle cost	\$	6,510,000.00	\$	6,710,000.00	\$	5,230,000.00	\$	3,252,000.00

 \oplus

Please contact us for more information.

Kevin Bossy kevin@bishopwater.ca

Tony Kobilnyk tony@bishopwater.ca

Jordan Van Shane jordan@bishopwater.ca 1-343-361-0463 www.bishopwater.ca

16 Edward St. S., Suite 203 Arnprior, ON, K7S 3W4

