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Disinfection Process Control — Can we get better?

* WRREFs typically overdose disinfectant by a factor of two

* |f chemical disinfection is used, several issues arise:
1. Excessive disinfectant cost and supply disruption
2. Excessive quenching cost and supply disruption
3. Risk of DBPs formation (especially with excess chlorination)
4. Inconsistent performance
5. Inadequate public health protection (during CSOs, plant upsets, etc.)

* Improving disinfection + saving money: Is this possible?




What is OaSys iCT™Role?

ICT™ is a novel control approach that optimizes disinfection
performance by calculating the optimal chemical dosage that
accounts for sources of treatment variability in real time.

Recommended for WWTP with:

*Highly variable flow or water quality
*High disinfection and/or quenching costs
-Limited contact basin sizing

*Tightening disinfection permit limits




Integrated Disinfection Design Framework
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But is it possible to apply this
“ U | U practically, in real time?
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Considerations for Chemical Disinfection
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* The primary challenge for chemical disinfection: VARIABILITY
 Flow variability: daily/diurnal hydraulics, rainfall events
« Water quality variability: TSS, BOD, nutrients (e.g. NH3), upsets, etc.



Considerations for Chemical Disinfection
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* Integrated Disinfection Design Framework (IDDF) required
 But not practical for real time process control

* Process variability necessitates dynamic control
* Model-based control such as ICT is ultimately necessary



Opportunities and Challenges

We can manually
select a
concentration set
point and flow

What's being
missed is the
iIntegration of the
variables that

pace to achieve a impact the
desired CT, BUT... disinfectant
chemical
demand

FLOW PACING ADVANCED DOSE CONTROL

...and this is what OaSys ICT™ dosing control provides



A Deeper Look: The Integral of CT

Core principle of CT integral:
relationship between
concentration and time

It's @ measure of the exposure of
microorganisms to the
disinfectant

Oxidizing disinfectants have an
initial instantaneous demand (D),
followed by a slow residual decay
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A Deeper Look: The Integral of CT
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Microbial Kinetics — OasSys iICT™ allows you to control CT dose



A Deeper Look: The Integral of CT
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...and we can use this curve to select our iICT™ setpoint



The CT Dose is Dynamic
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Flow Pacing Control

FLOW PACING

PAA INJECTION CONTROLLER
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Flow Pacing: The Variability Problem

Flow (m3/d)
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flow-pacing only keeps the
concentration fixed

The result Is intentional
over-dosing



Flow Pacing: Demand/Decay Problems
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The OaSys ICT™ Approach

OaSys ICT™ Dose Pacing
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Flow Pacing vs OaSys iCT™
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Performance Variability

E. coli Log Reduction
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Chlorine Dosage (mg/L)

Demonstrated Savings

Flow Pacing iCT™
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* [CT™ dose required 50%
less hypochlorite

e [ ower and more stable
residual chlorine In
effluent

* Expected reduction in
demand for quenching
chemical




What is it?
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Operating Modes

Demand based on Initial concentration
measurement vs. Injected concentration.

r
Decay based on Residual concentration relative Product Test Station D || PLC Stat: 11/16/23 11:17:07
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Highly Configurable System

Inputs

« Can be configured to source signal from the HMI, SCADA, or a hardwired 4-
20mA analog signal

* Highly configurable alarms with the ability to set system responses based on
alarm conditions

« Valid signals stored to ensure that in the event of a signal fault, a previously valid
value *7 Cl injecied Alarm Configuration
can be used until the fault is resolved "-'?‘A"

7.81ppm

 Maintenance overrides of signals to ensure uninterrupted system

operation Outputs il
CD Injected
* Are available via SCADA or hardwired 4-20mA analog signals o

« Maintenance overrides of signals to ensure uninterrupted system m NA  NA NA | 200m0 ||

operation Injected Target

* Limits can be configured to ensure the Injected Target only operates in a safe
range

« Alarms can be configured to use an enterable Failover Injected Target in the
event an alarm occurs

Configurable Alarm Outputs

* There are four configurable alarm discrete outputs

« These can be linked to specific alarms in the system to provide additional control
actions if required



Accessible Information

: Cusp ﬂiiiiift.ﬁe“ H’Hm "’
Alarmln” technologles Screen ID: System Alarms & Config (gl
° A|arms are |Ogged in the 11/28 23561 Maintenance Modo Active Warning ) '
HMI
« Alarms can be configured to email specified addresses
When they OCCUr Select || Lip Down H Check All Check || Delete Delete ATl
« Alarm status is available over SCADA —
C1 Initial 3.13 ppm
Treﬂdlﬂg C1 Ideal 0.51 ppm
C1 Non-deal 0.53 ppm
« Each signal has an associated trend

« Trends contain related signals —
« Trends can be viewed historically

. ™= Display Scroll Contro| ey
Data Logging

« Critical datapoints are logged in a remote data collection
server

« Logging interval is configurable | E-Mait Recipiemts - Da
- Data is available to be accessed remotely Regis
« Data can be to emailed specified addresses daily on a set ol |
schedule W |
W |
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