

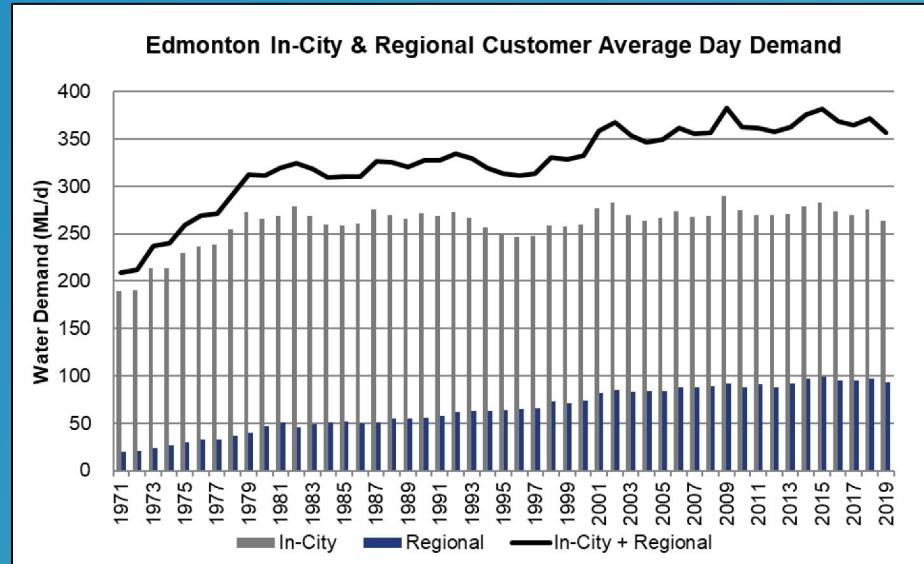
Striking a Balance in the North: How Edmonton Gets the Most from Its Water Transmission Main Condition Assessment Program

JUSTIN HEBNER

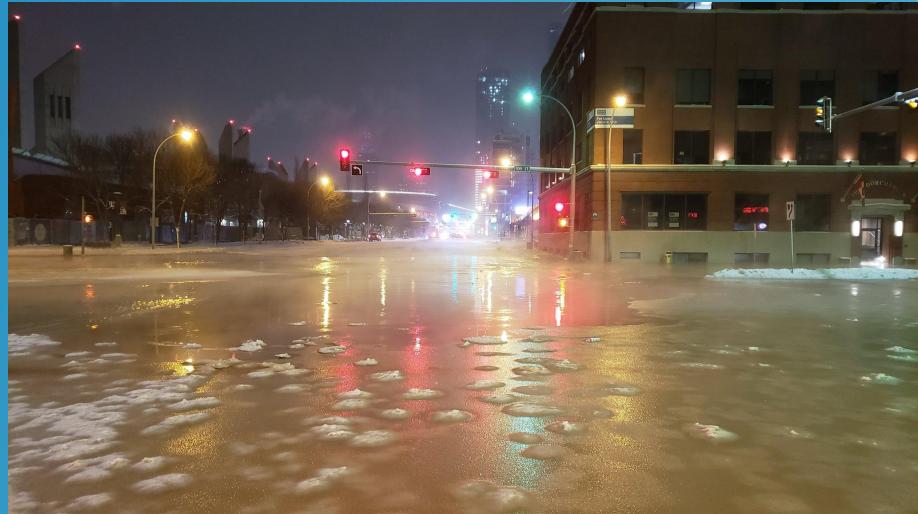
REGIONAL SALES MANAGER – PURE TECHNOLOGIES, A XYLEM BRAND

Edmonton, Alberta, Canada

- North America's northernmost major city
 - 1.4 million ppl
 - Below freezing for a third of the year
 - compresses the construction season
 - challenging for utility operation, maintenance and construction
 - coldest day in 2024 was -47°C (-52°F)
 - typical minimum depth of cover for buried pipe is 2.5 m (8.2') to the crown of the pipe to prevent freezing and damage due to frost.

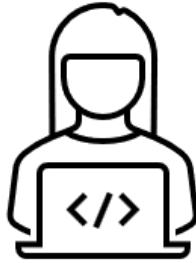

EPCOR Water Services (EWS)

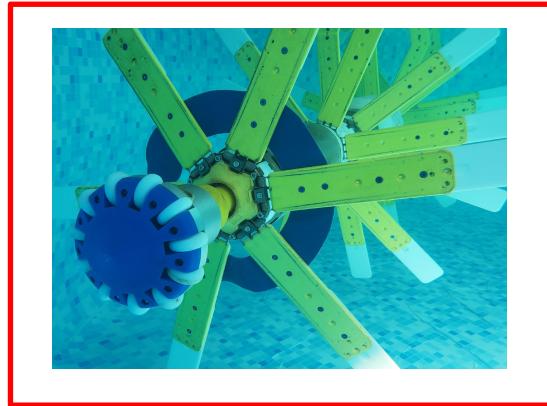
- EWS provides water and wastewater service to over 1 million people in Edmonton area
- The water transmission system consists of ~510 km (320 mi) of water mains
- Range in size from 350 mm (14") to 1525 mm (60") in diameter


Edmonton Water Demand

- Regional (outside Edmonton) growth driving increased water demand
- Population growth and an expanding service area

EWS WTM Condition Assessment Program

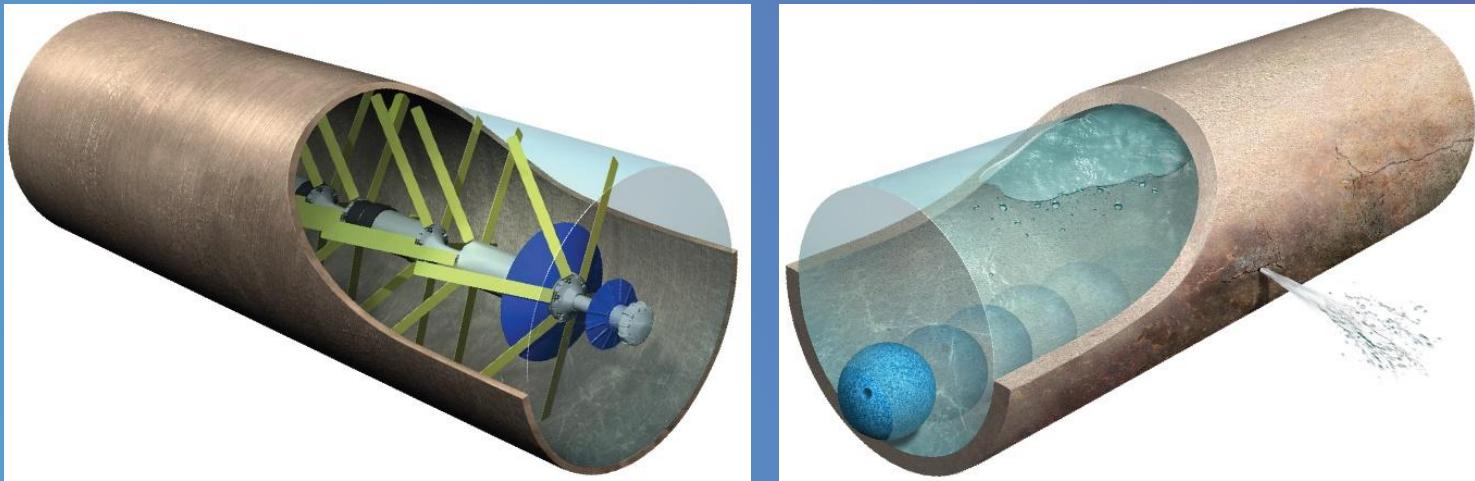

- The severity and consequence of transmission main breaks have been increasing
 - Repair costs alone can easily reach \$1 million
 - Breaks with residual chlorine can result in a reportable environmental event
- Breaks have the potential to cause broader and longer impacts for customers
 - Reputational damage/societal costs


Edmonton Watermain Break (Source: Global News)

EWS WTM Condition Assessment Program

- EWS considered the following options to address the need to determine better likelihood of failure for the mains:

Desktop



Inline Inspections

Run to Failure/
Emergency Repair

Inline Inspection tools

Inline electromagnetic (left) and acoustic (right) free-swimming inspection tools

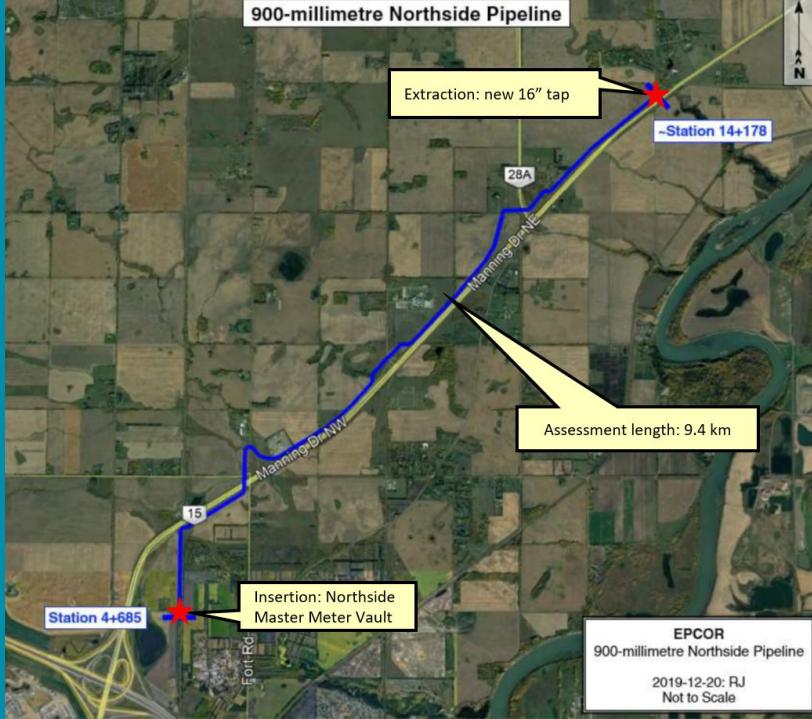
WTM ILI Risks & Mitigation

Risk	Risk Mitigation
1. Financial – Inspections not able to be executed due to inoperable valves or flow control.	<ul style="list-style-type: none">- Valve inspections are completed before inspections are executed. Valves will be repaired if needed or other projects will be chosen.- Hydraulic modelling will be completed prior to inspection and flow testing will be completed.- Planning meetings and a site visit with the contractor prior to the inspection will be completed to confirm operating conditions are suitable for inspection.
2. Financial and Operational Disruption – Tools becoming stuck in mains, leading to shutdowns.	<ul style="list-style-type: none">- Detailed investigation of the main and as-built drawings prior to the tool run will be completed.- Planning meetings and a site visit with the contractor prior to the inspection will be completed to confirm pipeline in-situ conditions are suitable for inline inspection.- EWS will preemptively run a small tool through the main prior to the larger tool runs to identify any issues that could arise.

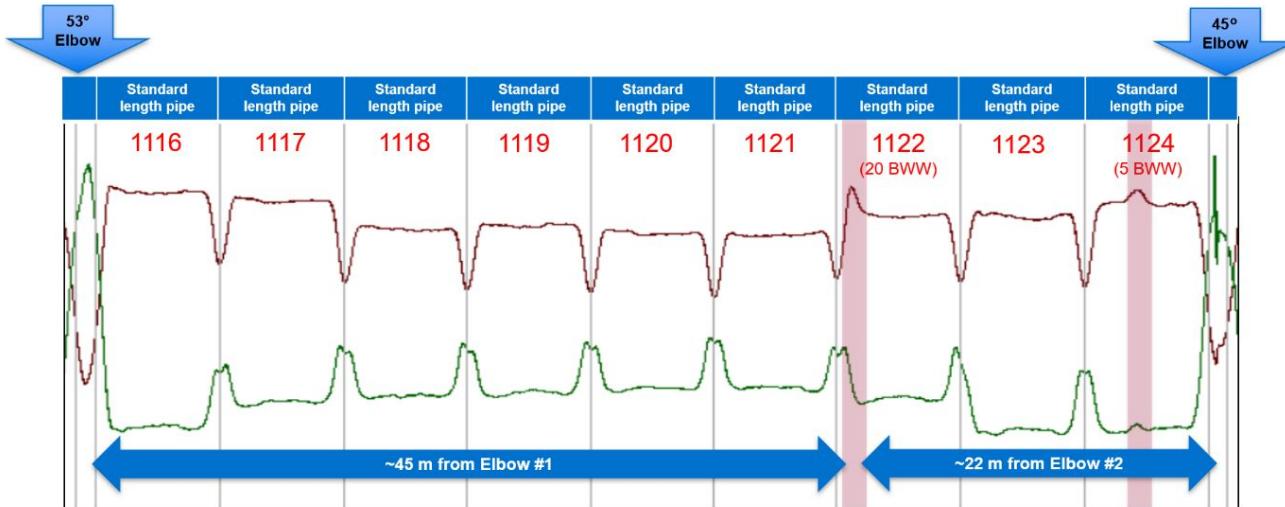
WTM ILI Planning

- Each year, EWS usually plans two weeks in the Spring and two weeks in the Fall to prepare and inspect its water transmission main network.
- Planning is detailed and preparation typically includes construction of new launch and retrieval points.
- EWS creates access points by wet tapping the main and installing a 400 mm (16") valve to allow for live tool launch and retrieval – no line shutdowns are required for the preparation or inspection.

Wet tap with launch tube (left) and insulated retrieval/extraction tube (right)


WTM ILI Challenges

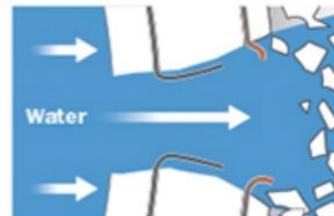
EWS WTM Condition Assessment Program Results


Date	Distance (km)	Diameter (mm)	Material	Inline Inspection Type	Results
2019-Nov	9.42	900	C301 PCCP	Pipe wall defects and leak detection	- 10 distressed pipe sticks - 3 leaks
2020-Nov	1.13	1050	C303 BWP	Pipe wall defects	-4 distressed pipe sticks
2021-Oct	14.32	1050/750	C301 PCCP C303 BWP	Pipe wall defects and leak detection	-2 distressed pipe stick -4 leaks
2023-Apr	3.63	1050	C303 BWP	Pipe wall defects	- 14 distressed pipe sticks
2023-Oct	3.77	1050/750	Steel	Pipe wall defects and leak detection	- 1 pipe wall defect - 1 pipe wall dent - 16 pipes out-of-round >5%
2024-Nov	5.42	750/600	C301 PCCP	Pipe wall defects and leak detection	-0 defects or leaks
2025-Mar	9.42	900	C301 PCCP	Pipe wall defects and leak detection	- 7 distressed pipe sticks - 3 leaks
2025-Dec	5.3	750	C301 PCCP, C303 BWP, Steel	Pipe wall defects and leak detection	TBD
Total (annual avg.)	52.4 (8.7)				

2019 Pilot Project

Pipeline	Diameter/ material	Inspection distance (meters)	No. of pipes inspected	Pressure (psi)	Pipes with broken wire wraps (BWW)	Leaks
Northside Pipeline	900mm/ C301-L	9,416	1,361	Min 47.7 Avg 57.6 Max 66.6	10	3 (1 joint, 2 barrel)

EM Inspection Data


1.

Most commonly, the mortar coating cracks, either through mishandling, accident, poor manufacturing, erosion, or just age.

2.

Water seeps in and corrodes the wires. Wires break, creating a weak spot.

3.

Internal water pressure overwhelms the concrete core. The steel gives way, and the pipe bursts.

2019 Pilot Project

2019 Pilot Project

Conclusion

- EWS' program prioritizes its water transmission mains for inline inspection to evaluate the condition, determine where repairs are required and reduce the number of breaks
- EWS' current plans are to accelerate the inspection program to complete 2 inspections per year until all critical mains have been inspected.
 - Once complete, a re-inspection schedule will be created based on the recommendations from the original inspections, while updating the risk model and adding any new identified mains to the list.
- Utilizing inline inspection technologies provides EWS with high-resolution condition data and helps the program overcome unique challenges present in North America's northernmost major city.

Thank You & Questions

justin.hebner@xylem.com

604-783-6712

