Presented by

Suzan Chin-Taylor, CEO of Creative Raven Host of the DooDoo Diva's Smells Like Money Podcast

Rodney Dickerson, CTO of EnBiorganic Technologies

Reducing Odor, FOG, H2S, Sludge & Flushable Wipes Nature's Way

NWWC 2022

EXPLORING AND UNDERSTANDING YOUR CHOICES FOR SOLVING THE MOST COMMON AND BIGGEST PAIN POINTS IN TREATMENT PLANTS AND COLLECTION SYSTEMS

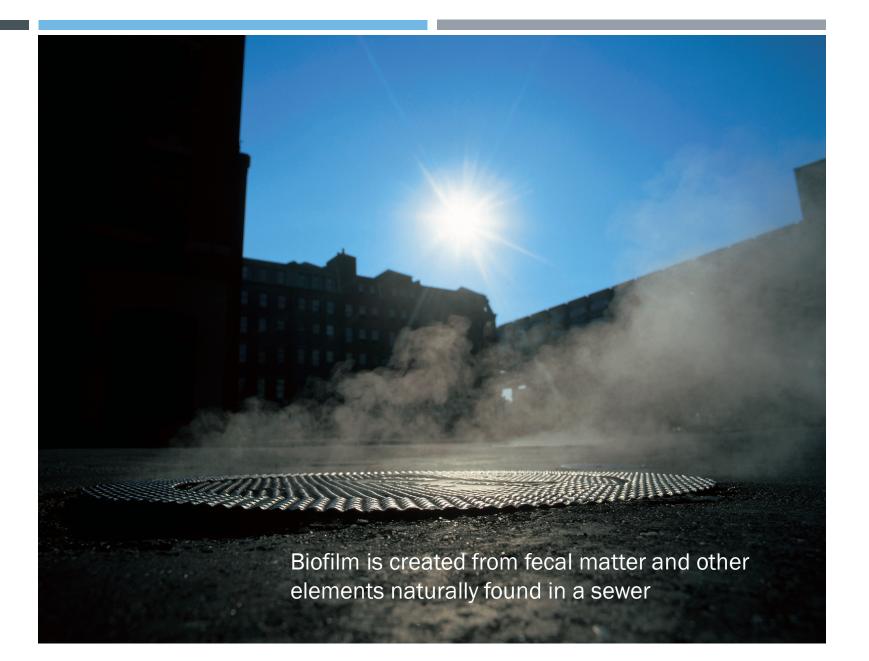
Two Schools of Thought

- Chemical
- Natural Biological

THE ISSUES

- Capacity
- Compliance
- Sludge and Associated Removal/Disposal Costs
- Odor
- Treatment Energy Costs
- Flushable Wipes
- H2S Damage
- Corrosion
- FOG
- SSOs

UNDERSTANDING THE CAUSES


So we can stop treating the symptoms and really eliminate the root of the problems

O.S. P.LANDI MINH

HOW ARE ODORS FORMED AND WHY DOES FOG ACCUMULATE

The answer: Microbiology or biofilm

LIKE A FINGERPRINT

Every wastewater collection system is unique

Although there are common denominators, a solution that works in one system or plant may not work the same in another

THERE IS NO ONE MAGIC SILVER BULLET TO SOLVE THEM ALL

OR COULD THERE BE?

CHEMICAL OR NATURAL?

LET'S LOOK AT WHAT IS AVAILABLE AND THE BEST FIT FOR YOUR APPLICATION

CHEMICAL: SODIUM HYDROXIDE (CAUSTIC SODA)

What It Is:

Basic chemical that elevates pH

Problems It Is Used to Solve:

H2S Odor Control

Remove FOG

pH Adjustment

Where It Is Used:

Collection System

Chemical Odor Control Scrubbers

Where is it deployed?

Pump stations, manholes, headworks of WWTP

By Who? Collection System Operators

How does it get there and is stored?

- Tanker trucks
- Stored in tanks equipped for hazardous material

How much is needed to be effective?

Varies by size of system

Byproducts if any: Kills microbiology

Effectiveness:

Generally effective but costly to maintain desired levels

Limitations:

- Only addresses areas downstream of application
- Challenging to control the application amount needed and rate or speed of application

CHEMICAL: BIOXIDE

What It Is:

A mixture of sodium and calcium nitrate

Problems It Is Used to Solve:

H2S Odor Control

Where It Is Used:

Collection System

Where is it deployed?

Upstream in manhole or wet well of where odor issues are occurring

By Who? Collection System Operators

How does it get there and is stored?

- Tanker trucks
- Storage tanks rated for hazardous material

How much is needed to be effective?

In nearly all cases, an increasing amount will be needed

Byproducts if any:

- Potential for sloughing
- Increase in H2S in areas downstream when nitrates are depleted
- Adding nitrogen to be removed at the WWTP

Effectiveness:

Yes, but byproducts create bigger issues

Limitations:

Confined to work in a limited distance downstream of application

CHEMICAL: FERROUS (IRON SALT) OR SULFELOX

What It Is:

Different forms of iron containing compound

Problems It Is Used to Solve:

H2S Removal

H2S Odor

Where It Is Used:

Collection System

Where is it deployed?

Upstream in manhole or wet well of where odor issues are occurring

By Who?

Collection System Operators

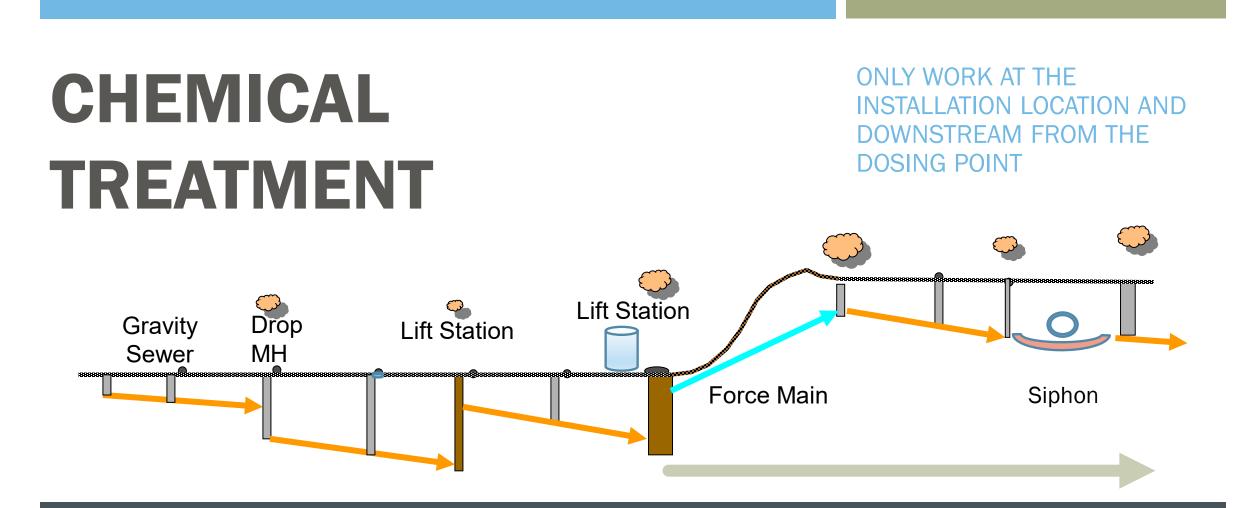
How does it get there and is stored?

- Tanker trucks
- Stored in tanks rated for hazardous material

How much is needed to be effective?

Varies based on site need and conditions

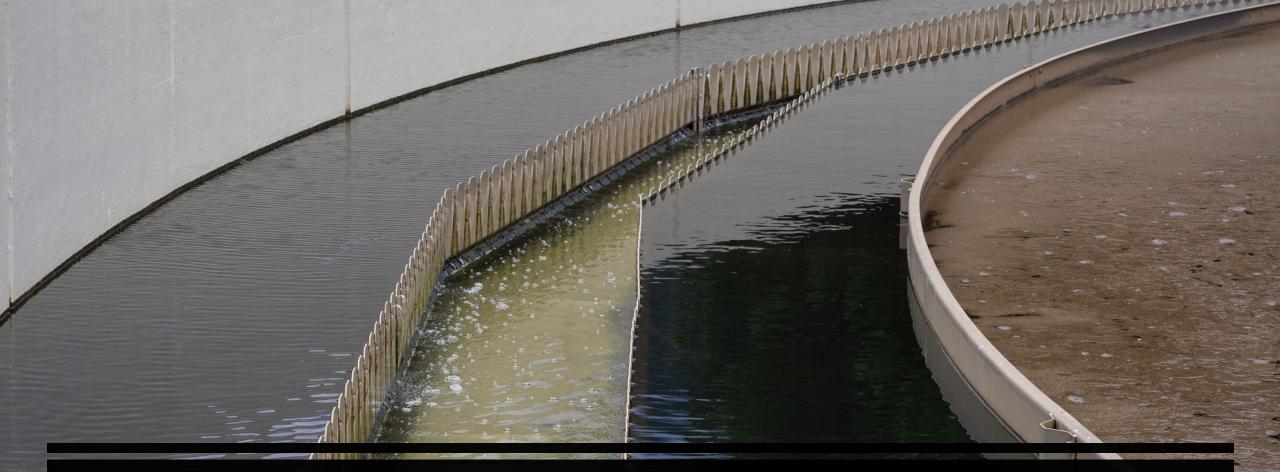
Byproducts if any:


- Increases volume of biosolids which must be handled at WWTP
- Increases sludge removal costsA
- Adding nitrogen to be removed at the WWTP

Effectiveness:

Yes

Limitations:


Only works downstream for a very short distance from deployment site

Each of these areas are susceptible to H2S release due to turbulence

CHEMICAL OR NATURAL?

LET'S LOOK AT WHAT IS AVAILABLE AND IS THE BEST FIT FOR YOUR APPLICATION

COMMON PRACTICE

All Wastewater Treatment Plants are utilizing microbes or "Mother Nature" in some capacity. It doesn't work without it.

UNDERSTANDING BACTERIA TYPES AND HOW/WHY THEY WORK

Fecal or "Gut" Bacteria

- Hundreds of species
- Anaerobic or Facultative
- Eats organic material
- Cellular division, slow many hours
- Consumes organics and nutrients
- Strengths
 - Can live with or without oxygen
 - Indigenous
 - Free
- Limitations
 - Aerobes die without oxygen
 - Anaerobes die from oxygen
 - Replicates slowly
 - Must "wake up"

Soil Bacteria and Customized Consortiums

- Genus Bacillus Facultative Anaerobe
- Spore State or Active
- Eats organic material
- Cellular division, doubles every 20 to 120 minutes
- Consumes organics and nutrients
- Strengths
 - Thrives with or without oxygen
 - Already awake, hungry and ready to eat
 - Reproduces quickly
 - Cannibalistic, dominates rapidly for quick results
- Limitations or Weaknesses
 - Requires bio-augmentation for application

NATURAL: TYPICAL BIOAUGMENTATION

What It Is:

Spore State Concentrate Bacillus

Problems It Is Used to Solve:

- H2S Odors
- FOG
- SSOs
- H2S Damage

Where It Is Used: WWTP and/or Collection System

Where is it deployed?

- WWTP in different locations
- Collection System in manholes or lift stations

By Who?

Collection System Operators or Treatment Plant Operators

How does it get there and is stored?

- Standard freight delivery
- 55 gallon drums or jugs

How much is needed to be effective?

Varies with the system and the product/supplier used

Byproducts if any: None

Effectiveness: Yes, results can be unpredictable

Limitations:

Effectiveness affected by deployment location, cost, system conditions and other factors beyond the control of the operators

NATURAL: AUTOMATED BIOAUGMENTATION

What It Is:

Remotely monitored and controlled dosing with Active Adapted Consortium of soil microbes via Automated Dosing Generator Technology

Problems It Is Used to Solve:

- H2S Odor and Damage
- Odor from other sources
- Sludge Reduction
- High Aeration Costs
- Plant Capacity
- Permit Compliance
- FOG
- SSOs

Where It Is Used: WWTP and the Collection System

Where is it deployed?

- WWTP in different locations
- Collection System in lift stations

By Who?

- Certified and Trained Licensed Installers as Service
- How does it get there and is stored?
 - By standard freight
 - No storage

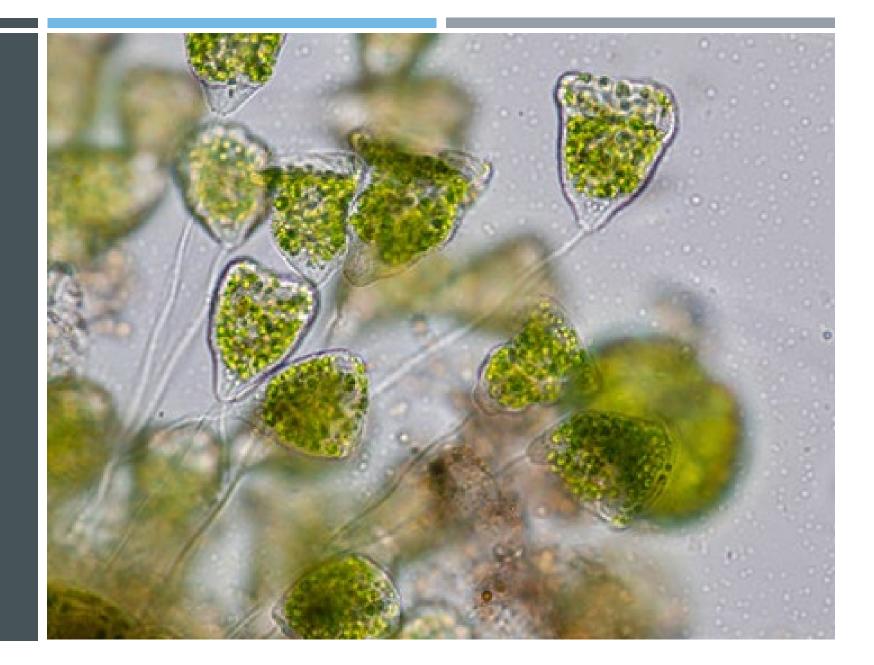
How much is needed to be effective?

- Technology is provided using a TaaS model (Treatment as a Service)
- Quantity determined by the system needs and results desired

Byproducts if any: None

Effectiveness: 100% Performance Guaranteed

Limitations: None


INNOVATION AND ADVANCEMENTS IN BIOAUGMENTATION

- Autonomous bio-dosing via remote controlled generator
- Disruptive, patent-pending process
- Utilizes customized soil bacteria
- Typically installed at lift stations, lagoons and headworks
- Requires no CAPEX or additional OPEX for treatment plant
- TAAS gives asset owner a fixed
 monthly cost
- Performance guaranteed

WHY A CUSTOMIZED SOIL BACTERIA CONSORTIUM?

- Tailored to the specific waste stream characteristics and the "food" available
- Self-regulating and adaptive, rapidly dominates the system
- Survives with or without oxygen
- Non-pathogenic
- Cannibalistic

LOCATION LOCATION LOCATION

- Typically installed at a lift station
- Further out in the collection system is preferred but an ideal placement is assessed by a technical team
- Microbes will travel both upstream and downstream from the discharge point in search of food
- Consumes and replaces
 existing biofilm
- Destroys the elements/conditions that create or produce harmful H2S
- Turns a collection system into a pre-treatment plant

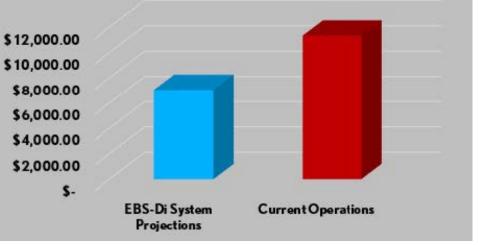
CASE STUDY

	Jal Class B Plant Performance	BOD	TSS	Total Nitrogen
Jal, New Mexico	Class B 30-Day Avg.	30 mg avg./max	39 mg avg;45 mg max	30 mg avg./max
	2018	45.2 avg.	59.3 avg.	33.7 avg.
PROBLEMS:	2019	39.5 avg.	44.3 avg.	41.5 avg.
 Compliance 	2020	20.2 avg.	48.5 avg.	29.5 avg.
	2021 - End of June	12.2 avg.	30.5 avg.	25.6 avg.
 Sludge 	After 3 months of treatment			
 Odor 	with the EBS-Di	5.5 avg.	5.2 avg.	10.9 avg.

CASE STUDY

Silver Spring, PA

PROBLEMS:


- Capacity
- Sludge
- Odor

Sludge Handling Costs

100

DOESN'T NATURAL ALWAYS COST MORE?

No. This is a misconception touted by many chemical or mechanical solution providers

Natural solutions are more effective, sustainable and do not have environmental concerns

BUT even natural solutions are not equal

IN SUMMARY... WHEN CHOOSING A TREATMENT OPTION

- Know the "track record"
- Expectations for performance
- Limitations or drawbacks
- Byproducts
- Environmental hazards/implications
- Worker safety
- Transportation and storage
- Cost (initial and ongoing)
- Labor to apply and maintain
- How many issues can it resolve
- Is it multi-purpose
- Benefits to your collection system
- Savings

ASK THE EXPERT OPEN Q & A PANEL DISCUSSION

An opportunity to ask and learn from Rodney Dickerson about wastewater treatment solutions, microbiology, advancements in bio-augmentation, and best practices for solving collection system and wastewater treatment plant's pain points.

Thanks for your time and being part of today's presentation

CONNECT WITH YOUR PRESENTERS

Rodney Dickerson, MS Chief Technology Officer EnBiorganic Technologies E: rod@enbiorganic.com www.enbiorganic.com

Suzan Chin-Taylor, MS CEO/President Creative Raven T: 760.217.8010 E: <u>raven@creativeraven.com</u>

www.creativeraven.com

