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Phosphorus in the environment

Healthy ecosystem Eutrophic ecosystem @
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Image source: https://www.unep.org/nowpap/what-we-do/prevent-and-reduce-
pollution/eutrophication

Phosphorus in wastewater
effluent has been linked to
eutrophication and the
development of cyanobacterial
blooms

Ontario provincial regulation:
Limit total phosphorus discharge
to a monthly average of 0.5 mg/L
based on composite samples
taken every two weeks

Effluent objective at WWTP:
0.3 mg/L




Phosphorus removal in wastewater treatment plants

Phosphorus is removed in wastewater

treatment plants (WWTPs) via: °__°

 Chemical coagulation followed by 0" — el
filtration

* Lime, alum, ferric chloride
* Biological phosphorus removal
* Enhanced biological phosphorus
removal (EBPR) with phosphorus
accumulating organisms (PAOs)
* Incidental removal in secondary
treatment process

The WWTP in this study relies primarily on chemical coagulation with alum and pH adjustment
at the headworks followed by filtration in the tertiary step for phosphorus removal

TEM image of PAOs used in EBPR : Yu, J., Porter, M., & Jaremko, M. (2013). Generation and utilization of microbial biomass hydrolysates in { LASSONDE
recovery and production of poly (3-hydroxybutyrate).Biomass Now: Cultivation and Utilization, InTech, 33-48. L OOOOOOOOOOOOOOOOOOO YO R K u




How can we leverage existing WWTP data
sources to predict effluent TP?



Wastewater treatment plants are complex

Dynamic influent AAA
conditions

Complex unit processes @

Increased monitoring

> COMPLEXITY

Uncertain
process
interrelation




Research objectives

Objective 1: To identify the most useful process variables for predicting effluent total
phosphorus (TP)

 Exploratory data analysis: Understand inputs and outputs and potential relationships

* Inputvariable selection: Formal process of establishing which parameters are
important inputs to ML models

Objective 2: To develop and compare two approaches to modelling effluent TP using
machine learning models:

* Model 1: Predict effluent TP concentration directly
* Model 2: Predict the probability of exceeding the provincial effluent TP objective
* Model 3: Predict the probability of exceeding the provincial effluent TP limit




Methods: Plant and data description

:

Headworks
Sewage Anoxic-Aerobic

Alum Added for Filtration Disinfection

Pumping Station Biological Treatment
Ping Coagulation 9

Aerobic Sludge

Treatment




Methods: Plant and data description

Over 200 SCADA signals every 5 minutes over 3 years
Bi-weekly offline total phosphorus measurements
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Modelling approach

Problem:
> What signals should we pay attention to?
> What lag period should be applied to different signals?

> Additional challenge — major discrepancy between number of SCADA
measurements and number of TP measurements:

* SCADA: once every 5 minutes = 105,120 measurements per year
* TP: twice weekly measurements = 104 measurements per year
* Ratiois 1000:1!



Modelling approach

Solution:
> Exploratory data analysis
> Prepare the data
* Average SCADA inputs over the course of the day
~ > Build models
* Regression
 Classification
> Input variable selection (1VS)

* Implement multi-method approach considering model-based and
model-free methods with a final iterative backwards elimination
approach to identify important input variables

| terative

=



)
= 20
E
o ‘/\______v——--—d/\_——-——_’——\.——'-v’\,/
- - = 0 - T T T T T T T T T T
P re I I m I n a ry 2018-01 2018-05 2018-09 2019-01 2019-05 2019-09 2020-01 2020-05 2020-09 2021-01
data 5
loration: £
exploration: g 25001
L
I n fI u e nt E 0 - T T T T T T T T T T
1 2018-01 2018-05 2018-09 20159-01 2019-05 2019-09 2020-01 2020-05 2020-09 2021-01
water quality
=]
o 50
E
= 25 4
b’
= T T T T T T T T T T
2018-01 2018-05 2018-09 2019-01 2019-05 2019-09 2020-01 2020-05 2020-09 2021-01
— 1000 4
_
i
E
S _
o 0 - T T T T T T T T T T
2018-01 2018-05 2018-09 20159-01 2019-05 2019-09 2020-01 2020-05 2020-09 2021-01
= 14
ik
M
o
=
=
2 0-

T T T T T T T T T T
2018-01 2018-05 2018-09 2019-01 2019-05 201%-09 2020-01 2020-05 2020-09 2021-01
Date




Effluent TP
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Exploratory data analysis: SCADA inputs
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Preliminary data exploration: SCADA outputs vs. effluent TP
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Solution: Machine learning

Machine learning:

“The task of showing the inputs and outputs of a problem to an algorithm and
letting it learn how to solve it”

- Serpa (2020) in Towards Data Science

| nput data >
, Traditional modelling — Outputs
Behaviour >
| nput data > , ] :
Machine learning — Behaviour
Outputs >
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Modelling approach

Input Layer

Modelling approach

Key questions:
What input variables should we use?
How can we best predict TP — concentration or exceedance?

ssssssss

Hidden Layer

Data (X)
o
Prediction (y) ‘—‘

Output Layer TP concentration
TP objective exceedance (yes/no)
TP limit exceedance (yes/no)

Cost

= f(predictions, observations)

Adjust w, B to minimize cost




Modelling approach

Key questions:
What input variables should we use?
How can we best predict TP — concentration or exceedance?

L




Build initial models

Each model included
multiple artificial neural
network (ANN) multilayer
perceptron (MLP) base
learners that were combined
to create ensemble ANNSs

For each ensemble model,
the response from each base
learner is combined to create
a confidence interval or
probabilistic output

\[eTe[SINMN Predict TP concentration

- Regression model
« Costfunction = mean squared error

\IleIe[IPAN Predict exceedance of TP objective

- Classification model
« Cost function = binary cross entropy

\[eTe [SIFSEN Predict exceedance of TP reg.

- Classification model
« Cost function = binary cross entropy



Evaluating model performance

Regression models: Root mean
square error (RMSE) and R?

Classification models: Accuracy,
Recall, Precision, Brier Score

Confusion matrix

Predicted Condition

Positive Negative

True Positive | False Negative

False Positive | True Negative

RMSE =

Accuracy =

Recall =

Precision =

n
] (Yi — Di
Brier score =
_ n
1=1

. (Predicted; — Observed;)?

n

True Positives + True Negatives

n

True Positives

True Positives + False Negatives

True Positives + False Positives

True Positives

obs )2




Multi-method input variable
selection (1VS)

Step 1: Eliminate highly correlated variables

Step 2: Determine best lag period using
non-linear correlation

Step 3: Rank candidate input variables

Non-linear ANN: RF: MDI and
. CNPSA and
correlation 0 MDA
|

Step 4: Backwards elimination

Performance Metric Score

Performance Metric Score

—-RMSE —-RA2

0 20 40
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| teration (humber of parameters added)



Multi-method input variable
selection (1VS)

Step 1: Eliminate highly correlated variables

Step 2: Determine best lag period using
non-linear correlation

Step 3: Rank candidate input variables

ANN:

correlation P s ame MDA

Non-linear RF: MDI and

1O
|

Step 4: Backwards elimination
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Tertiary Treatment Sludge

Preliminary Treatment |Secondary Treatment Sludge Dewatering

and Disinfection Digestion
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| mportant variables identified via IVS

A Alum pump speed

TP (mg/L)
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| mportant variables identified via IVS

A Alum pump speed

Scum chamber level

TP (mg/L)

Scum Chamber 1 Level
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| mportant variables identified via IVS

. Filter 1 Waste Valve Open Status
=\ Alum pump speed 2.01
= 154
Scum chamber level S $ an
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Filter waste valve status — L o
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| mportant variables identified via IVS

A Alum pump speed

Scum chamber level

Filter waste valve status

TP (mg/L)

Filter 1 TSS
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| mportant variables identified via IVS

A Alum pump speed

Scum chamber level

Filter waste valve status

? Sludge room methane

TP (ma/L)

Sludge Room Methane

o
un

---- Objective (0.3 mg/L)
—-— Limit (0.3 mg/L)

O
o

Observations




Tertiary Treatment Sludge

Preliminary Treatment |Secondary Treatment Sludge Dewatering

and Disinfection Digestion
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Training the model

Experiment | Inputdata period Number of Type of training
samples dataset

All data from previous calendar year ~100 Static

2 365 days of data preceding the first 103-104 Moving window
day of the week being forecasted

3 14 days of data preceding week 4-6 samples Moving window
being forecasted

4 28 days of data preceding the first 10-12 samples Moving window
day of the week being forecasted

5 All data starting from the first week  >100-200 Increasing window
of the preceding year

6 All data starting from the last week >2-100 Increasing window
of the preceding year




Model 1: TP concentration modelling (regression model)
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Model 1 applied to test data set
Blue dots: Observed TP values

Confidence interval
for the mean predicted effluent TP
concentration

RMSE: 0.299 mg/L

Performance: Mean error was
about 0.3 mg/L +/- the predicted
value - this is pretty good!
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Model 2: TP objective exceedance modelling (classification model)
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Blue dots: Observed exceedance/non-
exceedance

Probabilistic predictions of
exceedance

Accuracy: 71%
Recall: 73%
Precision: 68%

Performance: Correctly predicted
exceedance vs. non-exceedance 71% of
the time and correctly identified
exceedances 73% of the time
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Model 3: TP limit exceedance modelling (classification model)

Model 3 applied to test data set
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Summary of model results

Model _______Type ___|Performance __[Notes

Model 1: TP Regression RMSE: 0.299 mg/L Mean error was about 0.3
concentration mg/L +/- the predicted value
— this is pretty good!

Model 2: Classification Accuracy: 71% Correctly predicted exceedance

Exceedance of TP Recall: 73% vs. non-exceedance 71% of the

objective Precision: 68% time and identified exceedances
73% of the time

Model 3: Classification Accuracy: 71% Correctly predicted exceedance

Exceedance of TP Recall: 53% vs. non-exceedance 71% of the

regulatory limit Precision: 47 % time and identified exceedances

53% of the time

JrassonoeE YORK LI,



Takeaways

1. ML can accurately forecast wastewater effluent quality using
routinely collected data

2. ML can select unintuitive but useful relationships between process
variables and target outputs

3. The highly correlated and non-linear relationships between
process variables require advanced |VS



Next steps

Short term:

1. Continue engagement with OCWA process engineers, data specialists, and
operators

2. Deploy models for live testing on OCWA SCADA systems

3. Expand modelling to include other effluent quality parameters

4. New models to simulate and optimize individual unit processes

Long term: YorkU and OCWA are building a long term collaboration to explore the
application of these methods to:

1. Optimizing wastewater plants for energy savings and resource recovery

2. Water safety monitoring in water treatment plants

3. Drinking water distribution system monitoring
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Climate effects

: | ncluding the climate
Normalized influent flow ( ) variables
Total phosphorus (blue dots) (temperature,
) . precipitation,
: : barometric pressure)
did not improve
. performance




Bonus slides



Multi-method input variable
selection (1VS)

Step 1: Eliminate highly correlated variables

Step 2: Determine best lag period using
non-linear correlation

Step 3: Rank candidate input variables

: ANN: .
Non-linear CNPSA and RF: MDI and

correlation 0 MDA
|

Step 4: Backwards elimination

Performance Metric Score

Performance Metric Score
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Step 1

* Correlation between variables assessed with Pearson, Spearman, and Kendall
* |f two variables had correlation(s) greater than 0.5 one was removed

 When selecting which of the correlated pair of variables to retain or eliminate, we sought
to retain candidate variables that were correlated with the most other variables as this
ensured that the largest number of correlated variables possible were eliminated.

. Jassonoe YORK L,



Step 2

* Correlation between variables assessed with Pearson, Spearman, and Kendall
* |f two variables had correlation(s) greater than 0.5 one was removed

 When selecting which of the correlated pair of variables to retain or eliminate, we sought
to retain candidate variables that were correlated with the most other variables as this
ensured that the largest number of correlated variables possible were eliminated.

. Jassonoe YORK L,



Step 3

Six different IVS methods to rank each candidate variable’s effect on the output variable. A multi-method approach
allows us to assess patterns in the results across multiple methods, identifying which variables are consistently
identified as useful input variables and which are not.

There are two main types of IVS methods: model-free (statistical measures) and model-based methods. Model-based
approaches instead train a machine learning model on the full set of candidate variables and then measure the
importance of each candidate variable to the model based either on the contribution to the model’s prediction (for
example, the coefficients in a linear regression model), or using a sensitivity analysis to assess the impact of the variable
on model performance. The model-free methods we used were the Spearman and Kendall rank correlation coefficients,
and the model-based approaches were Combined Network Pathway Strength Analysis (CNPSA) and Input Omission (l0),
both measured using artificial neural networks (ANNs), and Mean Decrease in Impurity (MDI) and Mean Decrease in
Accuracy (MDA) using random forests (RFs).

We used each of these methods to score each candidate variable only at the best lag identified in Step 2. Thus, for the
ranking of variables based on Spearman and Kendall rank correlation, we used the correlation scores obtained for the
best lag in Step 2 and ranked each candidate variable based on the absolute value of the correlation coefficient. The
model-based methods are described below. After each IVS method had been used to rank each candidate variable for
all three models, an overall ranking was generated for each variable for each model by taking the sum of the rank for
each IVS method

44 Jassonoe YORK LY,



Step 4

Train an ANN ensemble using the past two lagged TP measurements. Sequentially add each candidate variable at its
best lag based on the overall ranking developed in Step 3, tracking the performance of the model with each variable
added. Eliminate two candidate variables which contribute to a decrease in performance. Repeat until either there are
no more variables that decrease performance or until the best performance is reached.

. Jassonoe YORK L,



Testing the model

Regression models: Root mean
square error (RMSE)

Classification models: Accuracy,
Recall, Precision

Confusion matrix

Predicted Condition

Positive Negative

True Positive | False Negative

False Positive | True Negative

Y-, (Predicted; — Observed;)?
\ n

RMSE =

True Positives + True Negatives

Accuracy =
n

True Positives
Recall =

True Positives + False Negatives

True Positives + False Positives

Precision = —
True Positives




Flow Rate (I/s)

Preliminary data exploration

Bioreactors (DO)
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Preliminary data exploration

Filter Basin Levels
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Climate effects (barometric pressure and rainfall)

Experiment 1 Experiment 2 Experiment 3
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Backwards elimination: Final round
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Methods: Plant and Data Description

Anonymized WWTP operated by Ontario Clean Water Agency (OCWA)

No primary clarification — solids removal in headworks and tertiary treatment
Phosphorus removal:

> Primary treatment via chemical precipitation (with alum)

> Secondary treatment

> Tertiary treatment (filtration)

Dataset

> 200+ SCADA variables collected every 5 minutes

> Biweekly total phosphorus
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