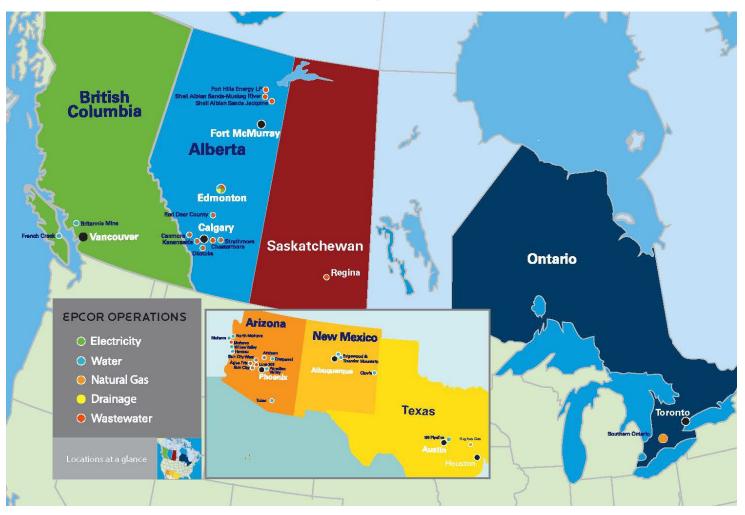



Evaluating The Impacts Of Leachate Co-treatment On A Full-scale Municipal Wastewater Treatment Plant In Canada

Rui (Ray) Li, Operations Engineer, EPCOR Water, Canada Rasha Maal-Bared, Wastewater Treatment Specialist, EPCOR Water, Canada Alfredo Suarez, Senior Manager Operations, Gold Bar WWTP, Canada

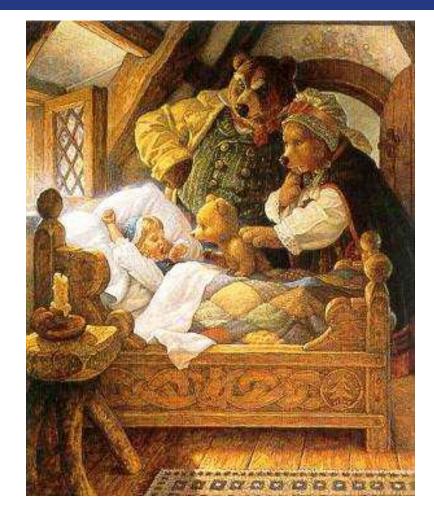

About EPCOR

- Owner & Operator of Water, Wastewater, Drainage, Electrical & Natural Gas Utilities
- 100+ year history

- About 1.9 million served
- Municipal and Industrial markets
- 3,500 employees
- Operations in Canada & U.S

EPCOR Operations

The Leachate Goldilocks Effect


Carbon and VFA Loading

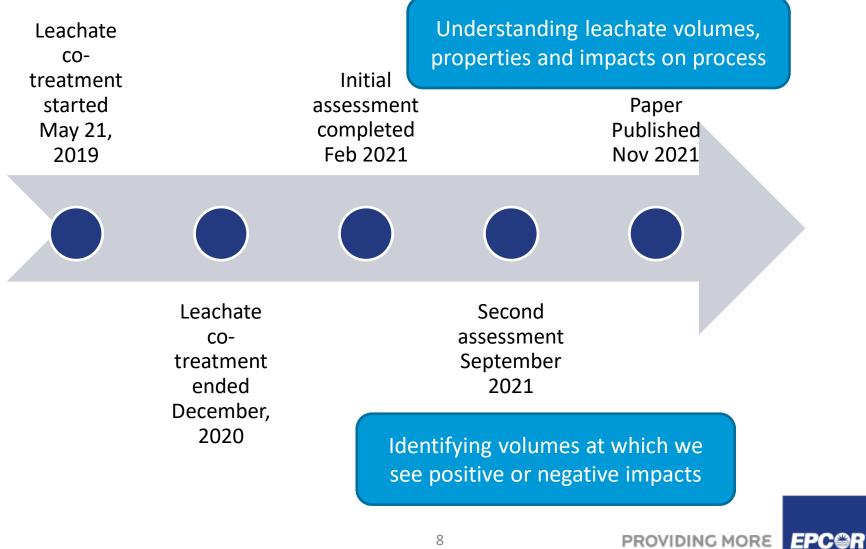
Microbial activity and BNR

Cost

BOD/COD

Toxicity

Main Objectives


Leachate Characterization	Impacts on Process	Volumes Leachate Contribution
------------------------------	-----------------------	-------------------------------------

Leachate Characterization

Data sources - Leachate

Timelines

INTERMEDIATE LEACHATE

Landfill age 1 - 5 years pH 6.5 - 7.5 BOD/COD 0.1 - 0.3 COD 3 - 15 g/L TOC/COD 0.3 - 0.5 5 - 30% VFA + humic and fulvic acids SUVA Index 10 - 30 L/cm. g C

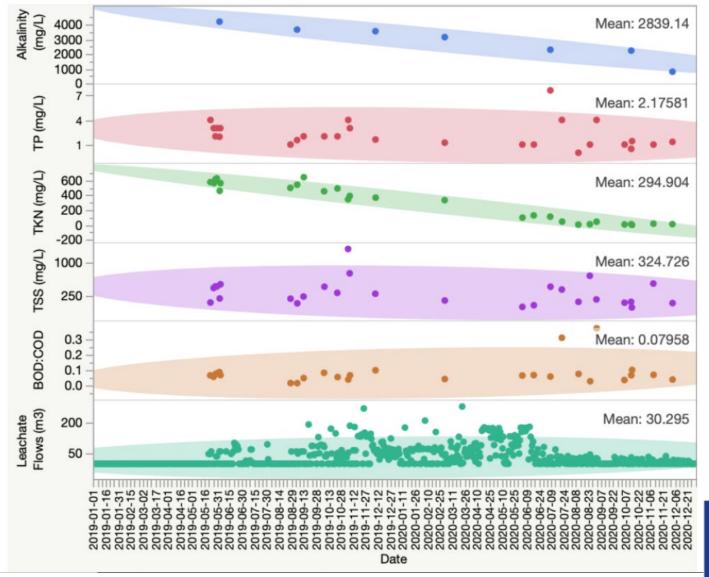
Aerobic, acidic phase

YOUNG LEACHATE

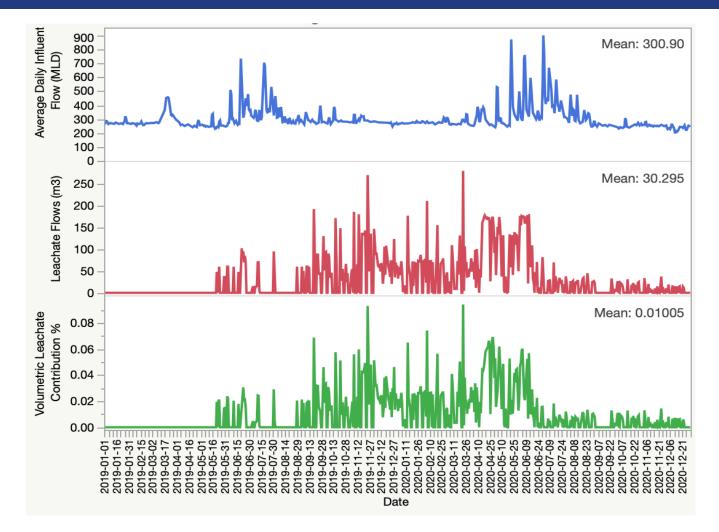
Landfill age < 1 year pH < 6.5 BOD/COD > 0.3 COD > 20 g/L TOC/COD < 0.3 NH3-N < 400 mg/L Kjeldahl-N 0.1 - 2 g/L 80% VFA concentrations SUVA Index < 10 L/cm. g C

Biological

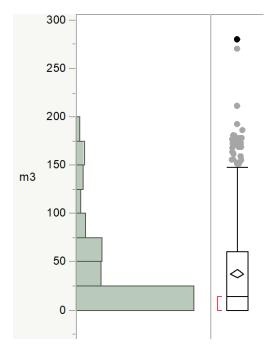
Treatment


Anaerobic, methanogenic phase

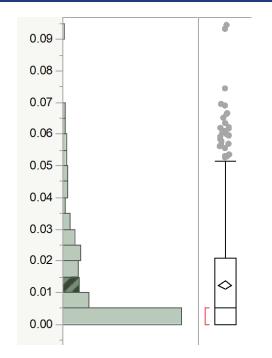
Landfill age > 5 year pH > 7.5 BOD/COD < 0.1 COD < 2 g/L TOC/COD > 0.5 NH3-N 3–5 g/L Hydrophobic humic and fulvic acids SUVA Index > 30L/cm. g C Recalcitrants remain



Leachate properties over time



EPC@R


Volumetric leachate ratios (VLR%)

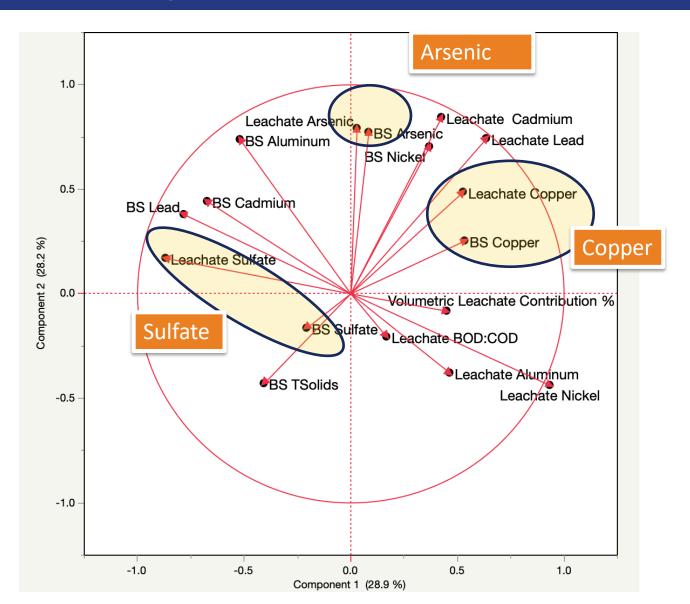
Volumes and volumetric contributions

100%	Max	270 m ³	
75.0%	Quartile	60 m ³	
50.0%	Median	14 m ³	
25.0%	Quartile	0	

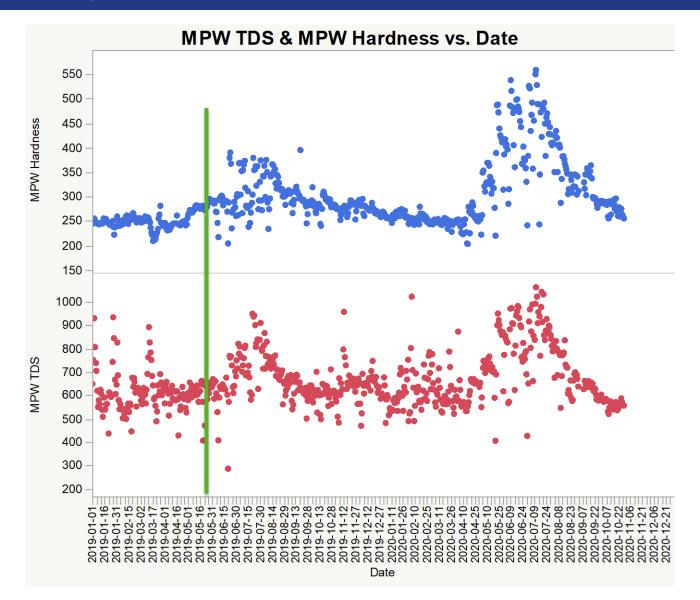
100%	Max	0.09 %
75.0%	Quartile	0.02 %
50.0%	Median	0.01 %
25.0%	Quartile	0

Leachate impact on process?

Reference	Volumetric ratio	Impacts observed when exceeded
Brennan et al., 2016	2%	Nitrification impacted when young leachate added; shock loads detrimental
Brennan et al., 2017b	4% for intermediate	Hydraulic loading-based NH ₃ -N acceptance limit not suitable for young leachate. Instantaneous loading should be avoided.
EPA Ireland, 2014	4%	Nitrification inhibition
Dereli et al, 2020	Plant-dependent	Shock loading should be avoided
Song et al., 2020	2%	TP removal reduced due to denitrifiers outcompeting PAOs
Bolyard et al., 2019	0.1%	UVT% drops below 65%
Masoner et al. 2020	1%	No difference in CEC concentrations when co-treating
Bolyard & Reihart, 2017	1%	Meets a TN limit of 3 mg/L only when bDON removal equals TN (no recalcitrant ON); at 0.01% UVT% and TN still impacted
Yuan et al., 2016	2.5%	Denitrifiers outcompete PAOs – replicating Winnipeg plant
Ye et al., 2014	0.03%	Impacts observed on TN removal (75 m ³ /d at 88 MLD)
Ranjan et al., 2016	20%	Biomass decay minimized at 6d HRT and 30d SRT
Danley-Thomson et al., 2020	5-10%	15-20% resulted in nitrite build up, but improved TP removal; shock loads detrimental
Booth et al., 1996	0.2%	2% BOD loading of Waterloo WWTP (carbon removal plant)
Zhao et al., 2013	3-5%	UVT < 60%
Ferraz et al., 2016	2%	No effects, BOD:COD = 0.5
Ferraz et al., 2014	2%	Non-biodegradable organic matter contributed to FE


Variable	by Variable	Spearman ρ	Prob> ρ		Process
VRL %	BOD FE	0.1388	0.0002*		Impacts
VRL %	N2O FE	-0.2549	<.0001*		
VRL %	BOD Removal %	-0.1019	0.0058*		
VRL %	COD Removal %	-0.4170	0.0426*		
Leachate COD	UVT %	-0.5469	0.0032*		
Leachate COD	NH3-N Removal %	-0.7569	<.0001*		
Leachate COD	BOD Removal %	-0.5160	0.0059*		
Leachate COD	TKN Removal %	-0.7121	<.0001*		
Leachate N-TKN	BOD:COD FE	0.7381	0.0366*	: : :	
Leachate N-TKN	UVT %	-0.6980	<.0001*		
Leachate NH3	NH3 Removal %	-0.7857	0.0362*		
Leachate Sulfate	NH3 Removal %	0.8571	0.0137*		
Leachate Calcium	UVT %	0.7857	0.0362*		
Leachate Iron	UVT %	0.8571	0.0137*		
Leachate Lead	cBOD Removal %	-0.9190	0.0034*		
Leachate Lead	TKN Removal %	-0.7568	0.0489*		
Leachate Lead	TP Removal %	-0.7928	0.0334*		
Leachate Phenols	VRL %	0.8469	0.0162*	: : :	
Leachate F2	NH3-N Removal %	-0.8214	0.0234*		
		Reject H ₀ : statistically significant	Do not reject H ₀ : not statistically significant		

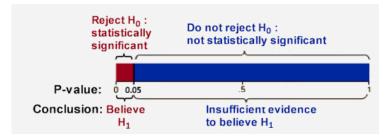
P-value: 0 0.05 Conclusion: Believe H₁


Insufficient evidence to believe H₁

.5

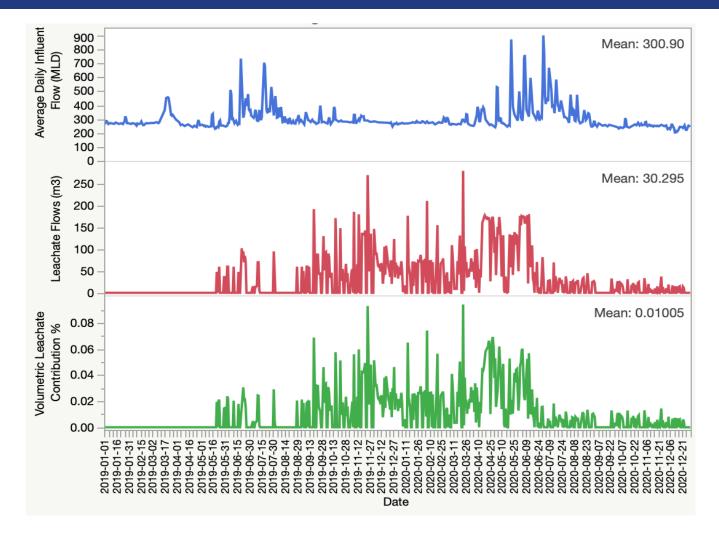
Impacts on Biosolids

Impacts on Membrane Filtration

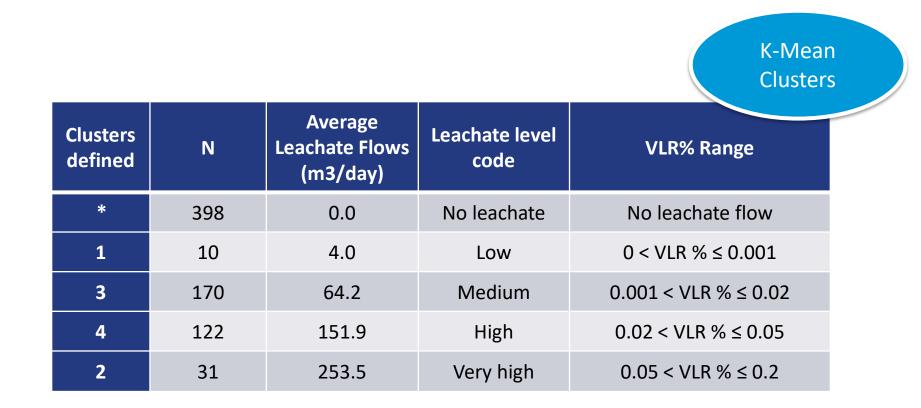


Impacts on Membrane Filtration

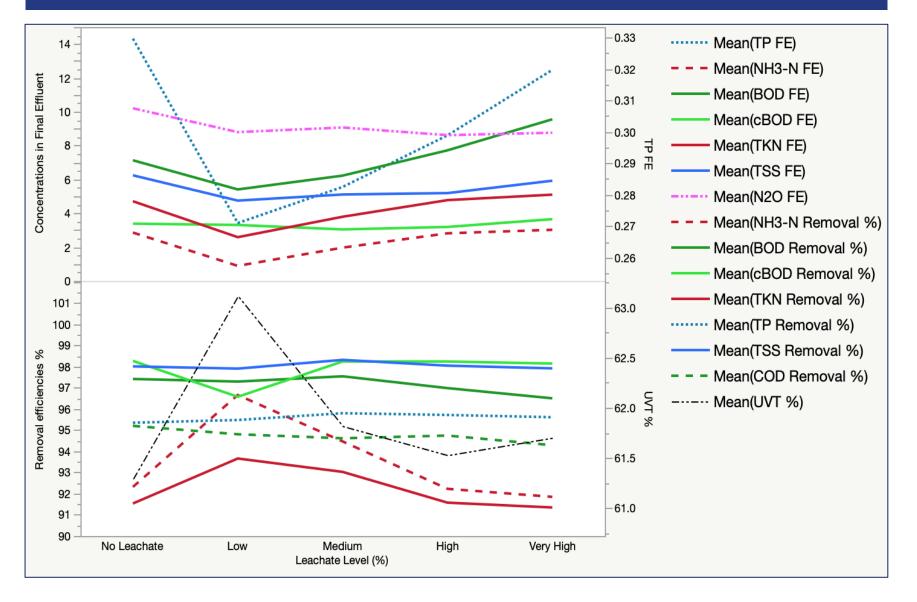
Variable
MPW TDS
MPW TDS
MPW Hardness
MPW Hardness
MPW Hardness
MPW Hardness
MPW Cl-
MPW Cl-


by Variable	Spearman ρ	$Prob > \rho $
TSS FE	0.1520	<.0001*
VR Leachate %	0.0915	0.0186*
TSS FE	0.1771	<.0001*
VR Leachate %	0.1073	0.0057*
Leachate pH	-0.8117	0.0499*
MPW TDS	0.5770	<.0001*
TSS FE	-0.1471	0.0001*
VR Leachate %	0.2225	<.0001*

1	1		1	 1	1	1	1
1			1	1	i.	1	1
		i i	i	1	i i	1	i
				i	i.	i	i
				1			
			i	i	i i	i	
i i			i	i i	i	i	i
				i	i i	i	
				 1	i i		
				i			
				i	i	i	
				i	i		
				1			
				i			
				÷	i		
				i	i		
				÷			
				÷	÷		
				i	i		
				i	i		
				-			
							:
			: I				:
		:	: .				:
			:				
				-			



At what volumes was leachate detrimental to process?


Volumetric leachate ratios (VLR%)

Identifying Volumetric Leachate Ratio Clusters

The Leachate Goldilocks Effect

Conclusions

 Removals are optimized at low to medium leachate addition levels, which corresponds with a VLR% of 0.001 – 0.02% (corresponding with 4 – 64 m³/day).

 Parameters like TP, BOD and UVT% in final effluent deteriorated significantly at leachate volumes higher than 152 m³/day.

Questions?

