MITIGATING MICROPLASTIC MICROPLASTIC POLLUTION THROUGH INNOVATIVE RESEARCH APPROACHES

11/7/2022

Presenter: Nancy Goucher, Water Institute, University of Waterloo Nancy.Goucher@uwaterloo.ca

Mitigating plastic pollution requires navigating the space between science and policy

Photo source: "Bridging the science policy interface: A new era for South African research and the role of knowledge brokering".

Plastics production outpaces recycling

Global production volume of plastics. Data; 1950 to 2016 (Plastics Europe 2016); 2017-2018 (Plastics Europe (2019). Forecast 2020 to 2050 (Rouch, D. 2021)

- Global plastics production has been growing exponentially since the 1950s
- Less than 9% of all plastics produced is recycled (OECD 2022)

Plastics are ubiquitous in daily life

Primary plastic production by industrial sector, 2015

Primary global plastic production by industrial sector allocation, measured in tonnes per year.

Geyer et al. (2017) Science Advances 3, 1700782.

Potential ecological and human health impacts

https://www.rollingstone.com/culture/culture-features/plastic-problem-recycling-myth-big-oil-950957/

- If plastic pollution continues at the current rate, by 2050 there will be more plastic than fish in the oceans
- The average person eats 70,000 microplastics each year (Catarino et. al 2018)
- Plastic particles have been found in human blood and placentas
- Nanoplastics are cause for concern for human health

Shi et al. (2022) Toxicity *in vitro* reveals potential impacts of microplastics and nanoplastics on human health: A review. *Critical Reviews in Environmental Science and Technology*, **52**, 3863-3895, DOI: <u>10.1080/10643389.2021.1951528</u>.

European Chemicals Agency: https://echa.europa.eu/documents/10162/05bd96e3-b969-0a7c-c6d0-441182893720

RESEARCH GAPS

Plastics cycle

No universally accepted definition of size and shape

Most commonly used:

- Microplastics: $\leq 5 \,\mu m \,(1 \,mm)$
- Nanoplastics: $\leq 1 \, \mu m \, (0.1 \, \mu m)$

Ottawa River: Vermaire et al. (2017) FACETS 2, 301-314.

nanoplastics

microplastics

mesoplastics macroplastics

NOOA ⁶	2009			<5000 µ	ım			•••••	
EU Commission ²²	2011	1–100 nm					• • • • • • • • • • • • • • • • • •		
EU MSFD WG-GES49	2013					20–500	0 µm	5-25 mm	>2.5 cm
GESAMP ²³	2015		<1	μm	1–10	00 µm	1–2	5 mm	2.5–100 cm
EFSA (CONTAM)60	2016	1–100 nm			0.1–500	00 µm			
		1	-						
	10 ⁻⁹	10 ⁻⁸	10-7	10-6	10 ⁻⁵	10-4	10 ⁻³	10 ⁻²	particle size [m]
	1 nm			1 µm			1 mm	1 cm	

fibers fragments beads films foams

Typically decreasing abundance in soils and sediments

Plastic composition provides clues to origin

Aggregates:

EPS

•

•

X(Cl, Br)-M CO0-///

-0~

minerals

biofilms

"plastisphere"

Fingerprinting to determine source

FTIR-spectrum for polyvinyl chloride (PVC).

Multiple techniques for characterization & identification

Technique	Advantages	Drawbacks
Optical techniques	Easy, inexpensive	Time- and labor-intensive consuming, no data on chemical composition
FT-IR spectroscopy	Non-destructive, fast, reliable, detection limit $^{20} \mu$ m, databases on polymers	Expensive, highly trained personnel
Raman spectroscopy	Non-destructive, smaller particles (1-20 µm), fast chemical mapping	Expensive, highly trained personnel
Pyrolysis-gas chromatography	Fast identification, databases on polymer composition and additives	Expensive and destructive

Most common methods

*Fu W. et al. (2020) Sci. Total Environ. 721, 137561.

Koyuncuoğlu P. and Erden G. (2021) *Environ. Monit. Assess.* **193**, 175. Caputo F. et al. (2021) *J. Colloid Interface Sci.* **588**, 401-417.

Data reporting & data management

Jenkins T. et al. (2022) Current State of Microplastic Pollution Research Data: Trends in Availability and Sources of Open Data. *Frontiers in Environmental Science*, 10:912107

Implications for science policy

- Many different methods (comparing apples and oranges ...?)
- Lack of standardization in metadata & data reporting (what, how, and where)

Hence...

- > Hinders comparability, reproducibility, reuse of microplastics data
- Complicates translation scientific results into policy/regulation

Premature or precautionary? California is first to tackle microplastics in drinking water

California is poised to issue the world's first guidelines for microplastics in drinking water despite no data on how plentiful they are in the state, no scientific agreement on how to test water for them and little research on their health risks.

CALmatters, March 15, 2021, updated August 3, 2021

https://calmatters.org/environment/2021/03/california-microplastics-drinking-water/

STRATEGIES FOR NAVIGATING ACADEMIC-PRACTITIONER PARTNERSHIPS

1. Establish Mutual Understanding

Flickr @ Dean Wissing

Establish a culture of openness

Be patient and provide feedback

Practical tips

Learn more and subscribe to our newsletter

https://uwaterloo.ca/microplastics-fingerprinting-research-project

UNIVERSITY OF WATERLOO

Get in touch! Nancy.Goucher@uwaterloo.ca