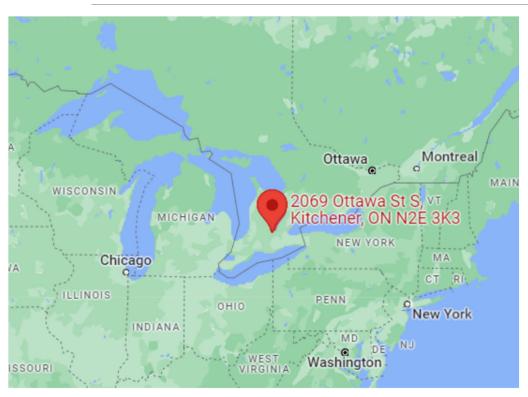
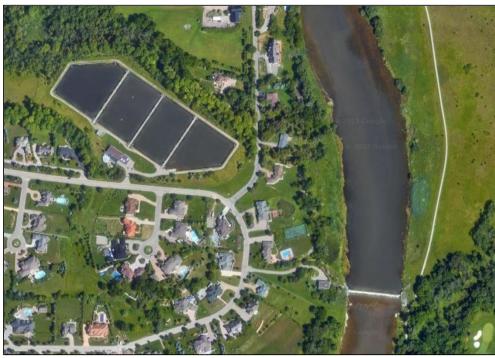
Better with Age: 30-year History of Ozone at the Mannheim Water Treatment Plant


MICHAEL MCKIE, DENNIS MUTTI – C3 WATER INC.


MICHAEL KOCHER – STANTEC

RYAN SNIDER – REGION OF WATERLOO

Mannheim Water Treatment Plant

Mannheim Water Treatment Plant

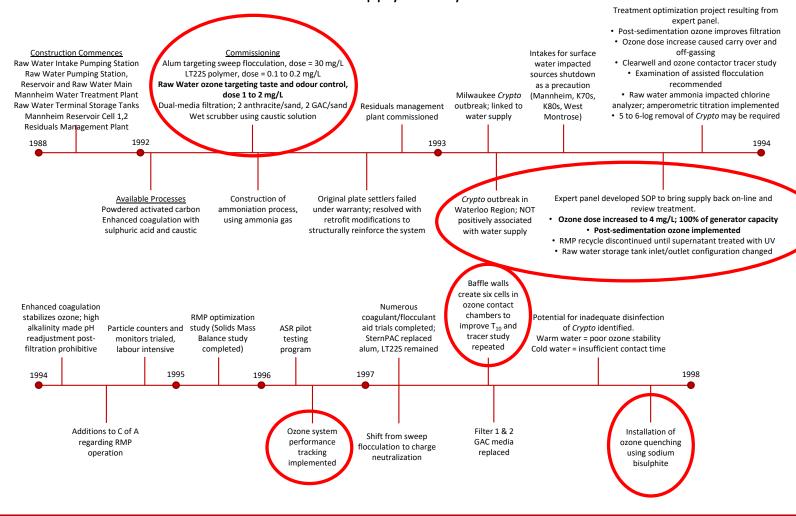
Mannheim Water Treatment Plant

72 MLD (16 MGD) surface water treatment plant

Temperature ranges from 0 − 27°C

Raw water DOC 3 – 6 mg/L

pH 7.3 - 8.2


Turbidity 2 – 10 NTU

- Grand River may exceed 100 NTU
- Substantial sedimentation in Hidden Valley reservoirs

Coagulant: PACI (~28 mg/L; may exceed 60 mg/L during high turbidity/pH events)

Cationic polymer: Magnafloc LT22S (~0.2 – 0.3 mg/L)

Mannheim Water Supply History – 1988 to 1998

Original Ozone System

Hankin air-fed system

3 generators − 2 duty/1 standby

90 Kg/day capacity at 1.8% w/w ozone

2 contact chambers with stone rod diffusers

Impact of Cryptosporidiosis Incident

- Ozonation process focus switched from a taste, odour and colour to disinfection
- Mannheim WTP switched from raw water ozonation to postsedimentation ozonation
- Dosage maximized.

Positive Impact of Ozonation and Preoxidation on Filtration

- '93 to '94 Mannheim WTP process review and plant optimization
 - · Positive effect of post-ozonation operation on filtration documented

Figure 3.4 FILTER PRESSURE PROFILE - FILTER 4
PRESEDIMENTATION ÖZONE MODE

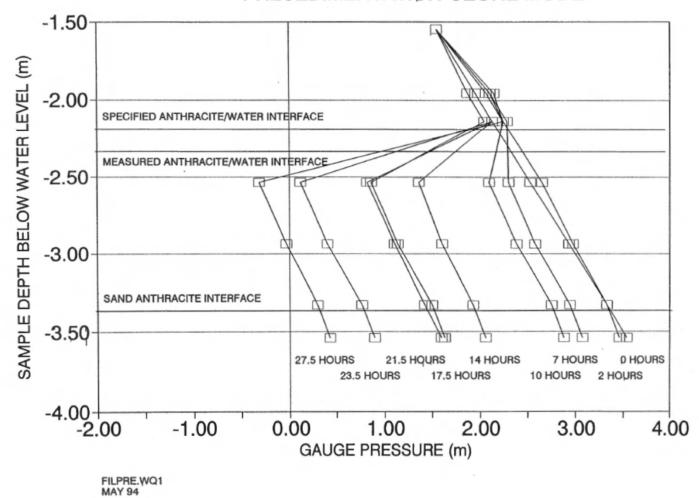
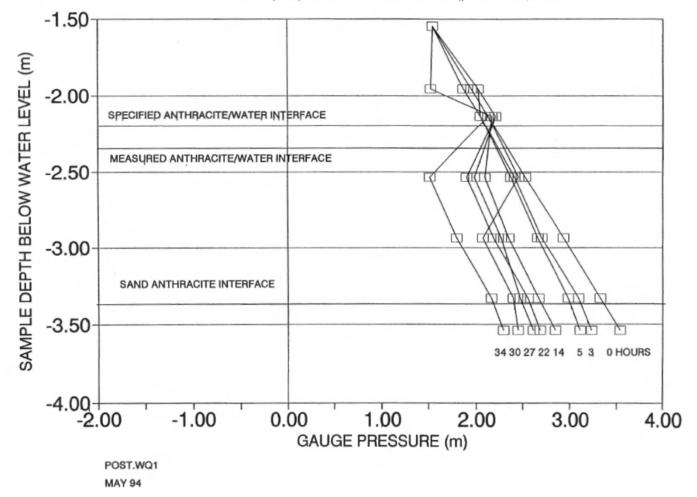
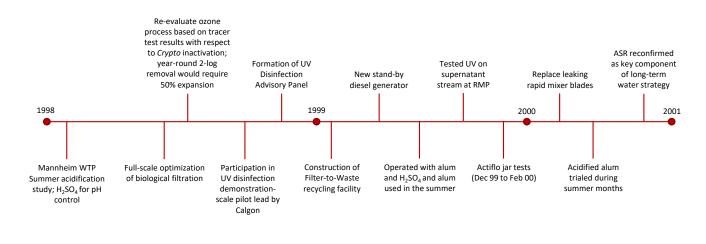
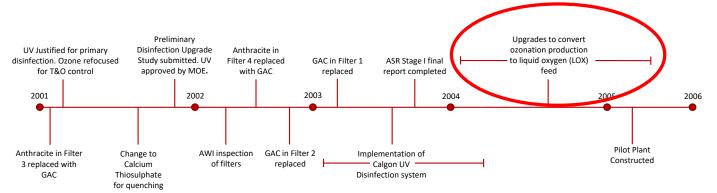





Figure 3.5 FILTER PRESSURE PROFILE - FILTER 4 POSTSEDIMENTATION OZONE MODE

Mannheim WTP History – 1998 to 2005

Advent of UV Disinfection

- '99-'01 Advent of UV disinfection
- Pioneering work that proved UV irradiation efficacy for *Cryptosporidium* inactivation occurred at Mannheim
- The patent battle

2004 - Conversion from Air-fed to LOX

Old air fed system was worn out

 Ran at 100% power output continuously for 10 years trying to achieve disinfection

Increased system capacity

- 180 kg/day @ 10% w/w ozone
- 360 kg/day @ 6% w/w ozone
- Dose up to 5 mg/L at max plant flow

Improved process performance and efficiency

Trickle down impacts were experienced

- Reduction in gas flow impacted the diffuser system
 - Diffuser lines cut and capped to accommodate reduced flow
- Changes to destruct system

INSTALLATION OF OZONE

DISINFECTION EQUIPMENT

MANNHEIM

WATER TREATMENT PLANT

REGIONAL MUNICIPALITY OF WATERLOO

CONTRACT No. T2003-014

WATER SERVICES

" RECORD DRAWINGS "

KEN SEILING
REGIONAL CHAIR
M. L. MURRAY, P. ENG.
COMMISSIONER OF TRANSPORTATION
AND ENVIRONMENTAL SERVICES

markar 200

2004 - Conversion from Air-fed to LOX

Old air fed system was worn out

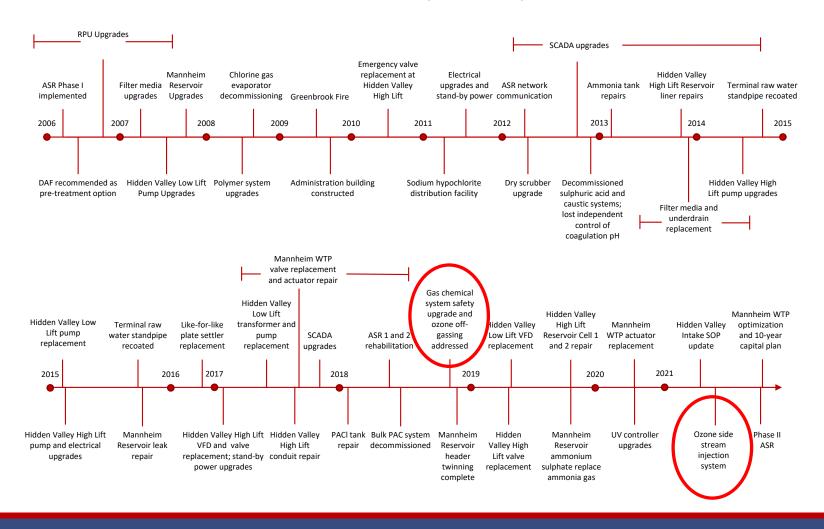
 Ran at 100% power output continuously for 10 years trying to achieve disinfection

Increased system capacity

- 180 kg/day @ 10% w/w ozone
- 360 kg/day @ 6% w/w ozone
- Dose up to 5 mg/L at max plant flow

Improved process performance and efficiency

Trickle down impacts were experienced


- Reduction in gas flow impacted the diffuser system
 - Diffuser lines cut and capped to accommodate reduced flow
- Changes to destruct system

Mannheim WTP History – 2006 to present

2017 - Chemical Gas Safety System Upgrades

Operations staff threatened a work refusal due to the ozone concentrations through the plant

Ozone off gassing in the filter gallery was perceived to be a health and safety issue

- Ozone into the plant drain and back up through raw water overflows
- HVAC ran primarily on recirculation mode, even during an ozone release
- · Ozone periodically vented from the building was recirculated to the administration building

Substantial modifications were completed:

- Review of plant start-up and shutdown procedures
- Programming changes related to interactions between SCADA, building alarms, security, and PA
- Ventilation modifications throughout the plant and administration area
- Installation of additional ozone monitors in areas of concern
- Upgrades to calcium thiosulphate quenching system

2019 - Quenching System Upgrades

Transition from SBS to calcium thiosulphate had already occurred

SBS unpleasant to work with; calcium thiosulphate is safer/cheaper

Quencher system modified to reduce off gassing in filter gallery

Historically, quencher dosed in the effluent trough

- Missed a significant portion of the outflow stream
- Immediately before filtration with limited contact time

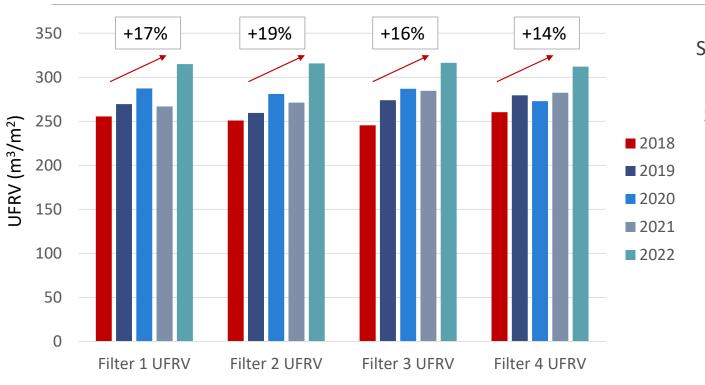
Modifications as part of this project included:

- Dosing quencher at the end of cell 5
- Redundant pumps for each side of the plant
- Improved controls programming

2021/22 - Sidestream Injection

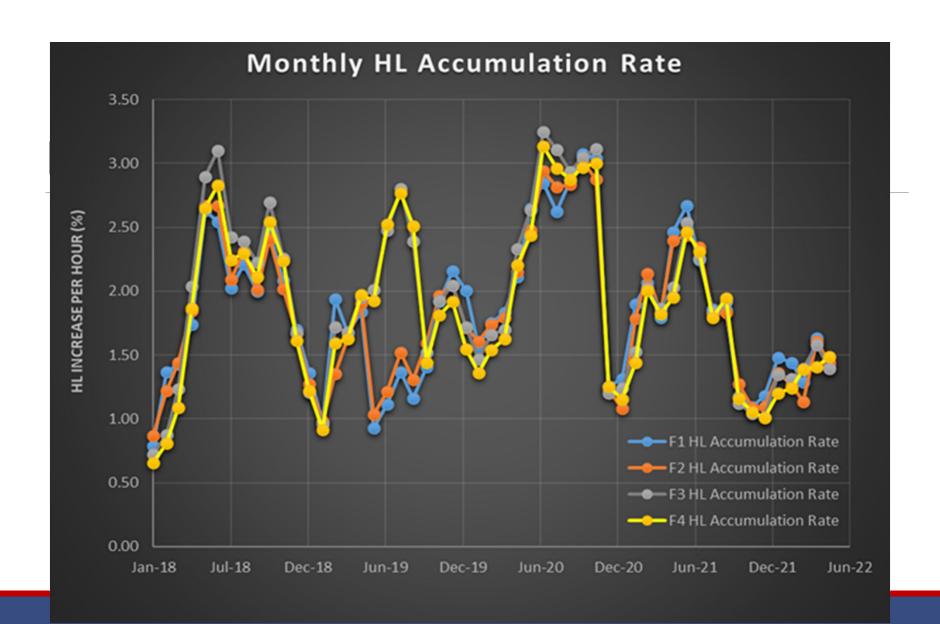
System upgrade completed to address issues with ozone transfer and inefficiencies of fine-bubble diffuser system

- High off-gas concentration
- Diffusers were maintenance intensive
- Reduce CSE frequency
- Ozone under vacuum

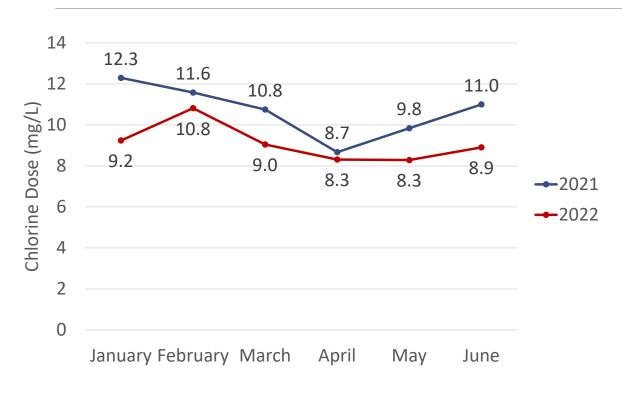

Improvements since SSI commissioning include:

- Lower off gas concentrations
- Improving filter performance
- Lower chlorine requirements

Filter Performance Has Improved



Seasonal UFRV compared


March 1 to May 31

SSI resulted in:

- 10-18% improvement when compared to 2021
- 14-19% increase when compared to 2018-2021 average

Chlorine Consumption is Reduced

Monthly reduction in chlorine dose ranges from 4 to 25%

Average 14%

Treated water chlorine residual increased by 3.5% in 2022

• 2.07 vs 1.99 mg/L

Takeaway: less chlorine required and residual is more stable

~30 Years of Ozone Evolution

	1991	2021
Purpose	T&O, Colour 1993 - Disinfection	2004 T&O, Colour, Back-Up Primary Disinfection, Readiness for Emerging Contaminants
Application Point	Pre-Coagulation	Post Sedimentation
Dosing Range	1-2 mg/L	3-5 mg/L
Gas Feed	Air	Liquid Oxygen
Concentration Range	~2%	6-10%
Production Capacity	90 kg/day	360 kg/day
Application	Stone diffuser rods	SSI
Quenching	None	Calcium Thiosulphate

What's Next?

Ozone currently being applied for taste and odour control, improving filter performance and organics reduction

 Raw water intake SOP includes attempt to operate at 1-log inactivation of Cryptosporidium during wastewater by-pass

Assess ozone sample station and destruct system configuration and operation

- Off-gassing occurs under some conditions
- Calculate ozone transfer efficiency
 - \circ $\,$ Make-up air currently prevents an accurate calculation from being completed
 - Modifications being completed as part of an upcoming contract

Generator mechanical inspection and refurbishment

PSU replacement

Controllers have become obsolete

Ozone Destruct System Modifications

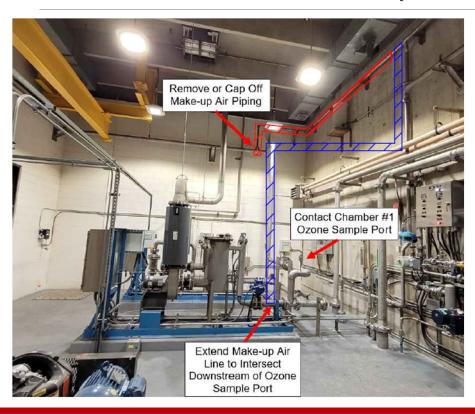
Ozone transfer efficiency has been identified as a key performance metric for the plant

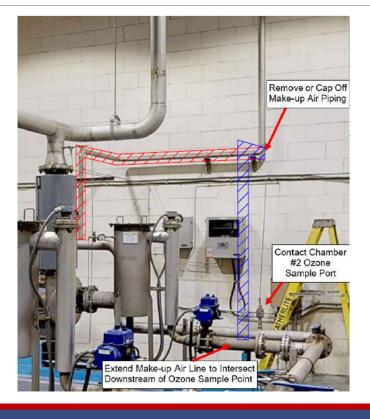
Destruct unit operates at ~1,050 CFM; ozone generator maximum is ~125 CFM

Typical ozone generator gas flow is much lower

Safety vacuum break located upstream of high concentration ozone analyzer

Off-gas concentration diluted


This configuration initially hypothesized to cause "saturation" of destruct media

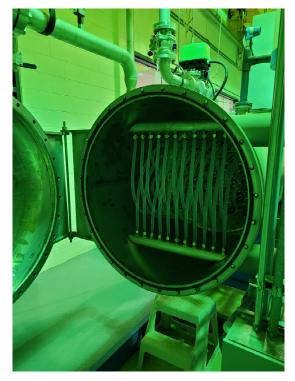

· High-humidity air poisons the media

Media has not been replaced since SSI

- Potential that fine-bubble diffusers were performing as coarse-bubble diffusers
- High-ozone off-gas concentrations saturated media

Ozone Destruct System Photos

10-year Generator Refurbishment


Disassemble and inspect critical generator components and structure

Clean all contact surfaces

Replace all wear components

- Electrical
- Gaskets

Re-assemble and test key systems and components

Power Supply Unit Replacement

Control cards have become obsolete

• Replacements no longer available

PSU replacement underway

- Provide additional process resiliency
- Avoid a long-term process upset
- Scheduled for installation September 2023

Transition planning critical

- Low water-demand periods
- Avoid causing process upsets/plant shutdowns
- Proactively prepare for potential disruptions

Paired with 10-year mechanical inspection and refurbishment to be completed in fall 2022

Looking to the Future

Process performance testing and optimization

Continue to test SSI system performance and plant response to higher doses

Understand the relationship with other parameters

· Organics removal, UFRV, chlorine demand, secondary disinfectant residual stability

Identify "optimal" operating conditions

• Water quality, production costs, maintenance requirements, etc.

Generator replacement (10+ year timeline)

THANK YOU FOR LISTENING! ANY QUESTIONS?

