

# **Cogswell DES – Energy from** Wastewater

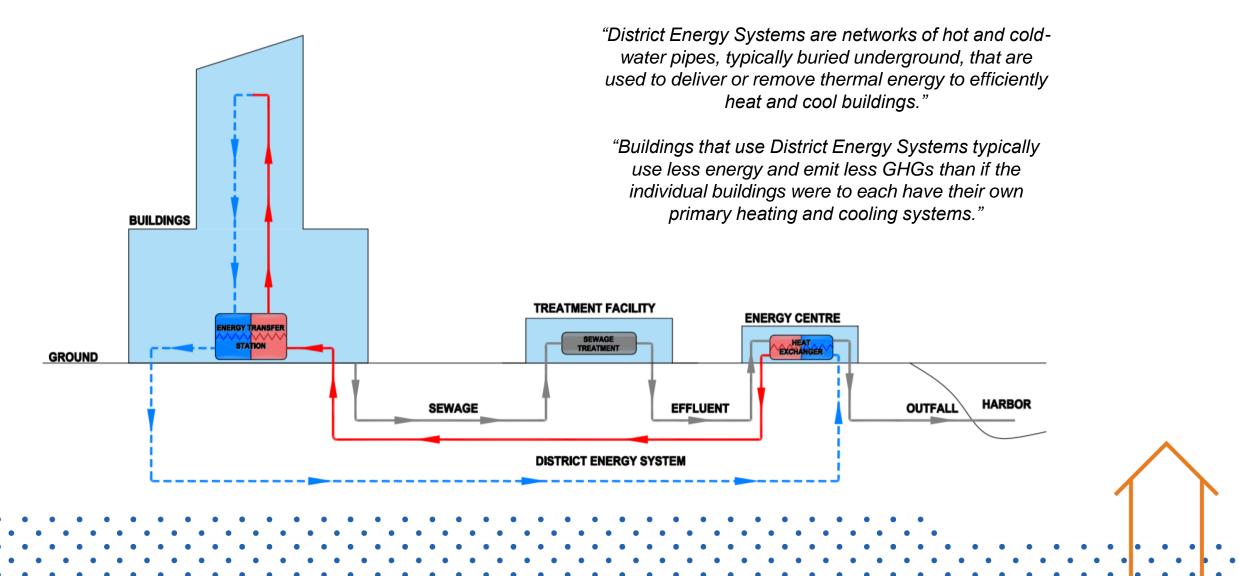
CWWA - National Water & Wastewater Conference 2022 Halifax, NS

November 8, 2022








# Outline

- What is District Energy?
- Benefits of DE
- A Brief History of DE
- Types of DE Systems
- High Temperature vs. Ambient Temperature DE
- Cogswell DES
- Progress To-Date & Next Steps

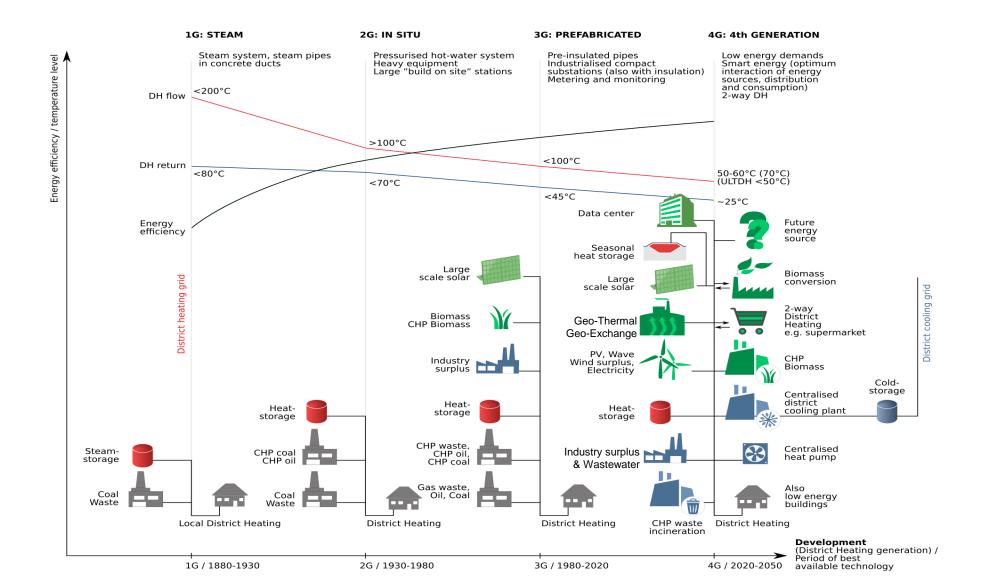




# What is District Energy?

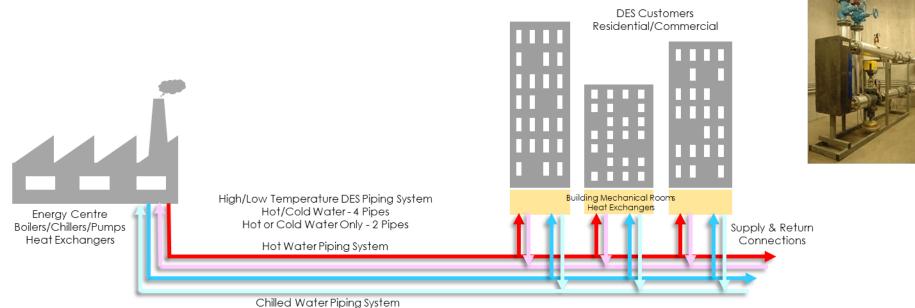


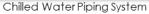



# **Benefits of District Energy**

- Improved Energy Efficiency
- Improved Local Air Quality
- Reduced GHG Emissions
- Environmental Protection
- Energy Resilience & Access
- Energy Rate Stability
- Ease of Operation & Maintenance
- Reliable, Proven Technology

- Comfort & Convenience
- Decreased Life-Cycle Costs
- Decreased Developer Costs
- Decreased Building Capital Costs
- Improved Architectural Design
  - Flexibility
- Improved Marketability & Value of
  - **Real Estate**





# **A Brief History of District Energy**



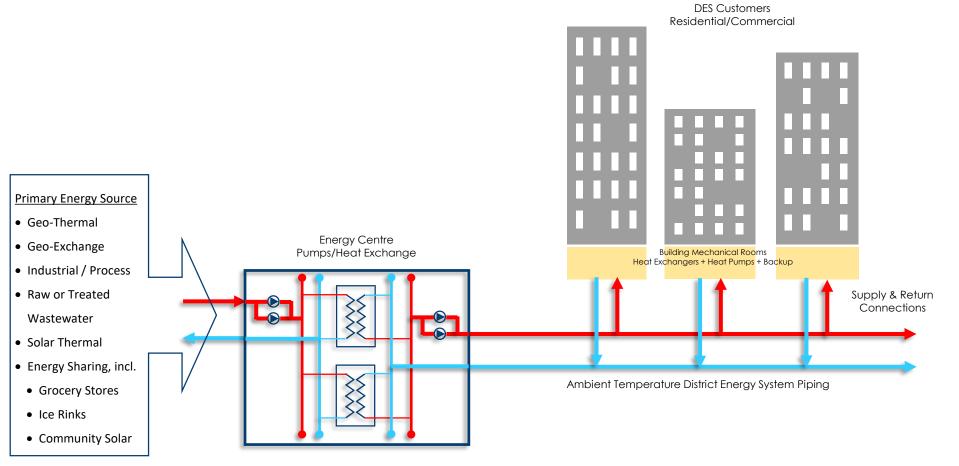


## 1<sup>st</sup> – 3<sup>rd</sup> Generation HTDES











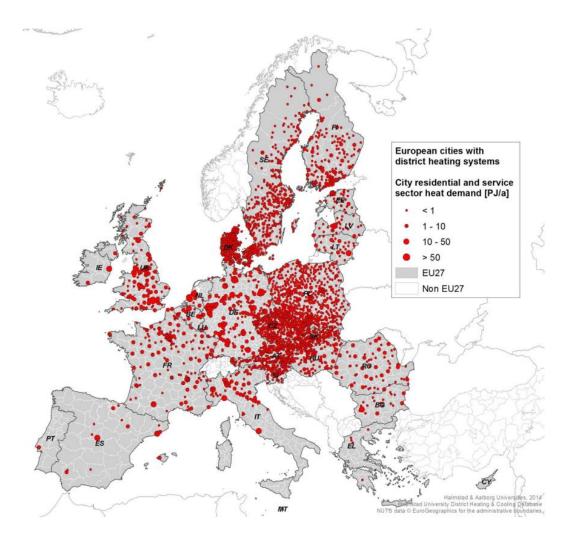





# 4<sup>th</sup>/5<sup>th</sup> Generation ATDES








# High Temp. vs. Ambient Temp.

- Refers to the temperature at which the heat transfer fluid is delivered to the customer.
  - High temperature ~ 70 to 90 °C
  - Ambient temperature ~ 10 to 25 °C
- Ambient Temperature DES Advantages:
  - Lower capital cost no large energy center
  - Modular build out delivers only energy that is needed
  - More energy efficient less DES piping losses
  - Individual back-up systems in each building better security of supply
  - Opportunities for integration of other renewable/waste energy sources
    - Distributed Solar
    - 2-Way Energy Sharing
    - Geo-Exchange
    - Connected CHP



# **District Energy in Europe**




#### Primary Fuel Sources

- Fossil Fuels (Natural Gas + Oil + Coal)
- Biomass
- Solid Waste
- Wastewater (Process + Sewage)
- Geo-Exchange (Geothermal + Lake/Sea Water)



# **District Energy in North America**



#### **Primary Fuel Sources**

- Fossil Fuels (Natural -Gas + Oil + Coal)
- Biomass -
- Solid Waste -
- Wastewater (Process -+ Sewage)
- Geo-Exchange -(Geothermal + Lake/Sea Water)





# **District Energy – Canadian Examples**

• Cheakamus Crossing ATDES, Whistler, BC (2010, AT WW Effluent)\*

https://www.whistler.ca/services/water-and-wastewater/district-energy-system http://www.cheakamuscrossing.ca/

- Southeast False Creek DHS, Vancouver, BC (2010, Raw Sewage/NG)\*
  http://vancouver.ca/home-property-development/southeast-false-creek-neighbourhood-energy-utility.aspx
  http://vancouver.ca/docs/planning/renewable-energy-neighbourhood-utility-factsheet.pdf
- Blatchford DESS, Edmonton, AB (Raw Sewage/Geo-Exchange)\* <u>https://blatchfordutility.ca/</u>
- Saanich ATDES, Victoria, BC (2011, WW Effluent)\*
  <u>https://www.crd.bc.ca/project/past-capital-projects-and-initiatives/saanich-peninsula-water-transmission-main-heat-recovery</u>
  <u>https://www.pembina.org/reports/ctax-casestudy-saanich.pdf</u>
- Markham District Energy, Markham, ON (2000 + 2012, NG CHP)\* <a href="http://www.markhamdistrictenergy.com/">http://www.markhamdistrictenergy.com/</a> <a href="https://www.markham.ca/">https://www.markhamdistrictenergy.com/</a>
- Alexandra DEU, Richmond, BC (2015, AT Geo-Exchange)\*

http://www.richmond.ca/sustainability/energysrvs/districtenergy/energyutility.htm

University of British Columbia, Kelowna, BC (2011, AT Geo-Exchange)

http://facilities.ok.ubc.ca/geoexchange/des-operation.html

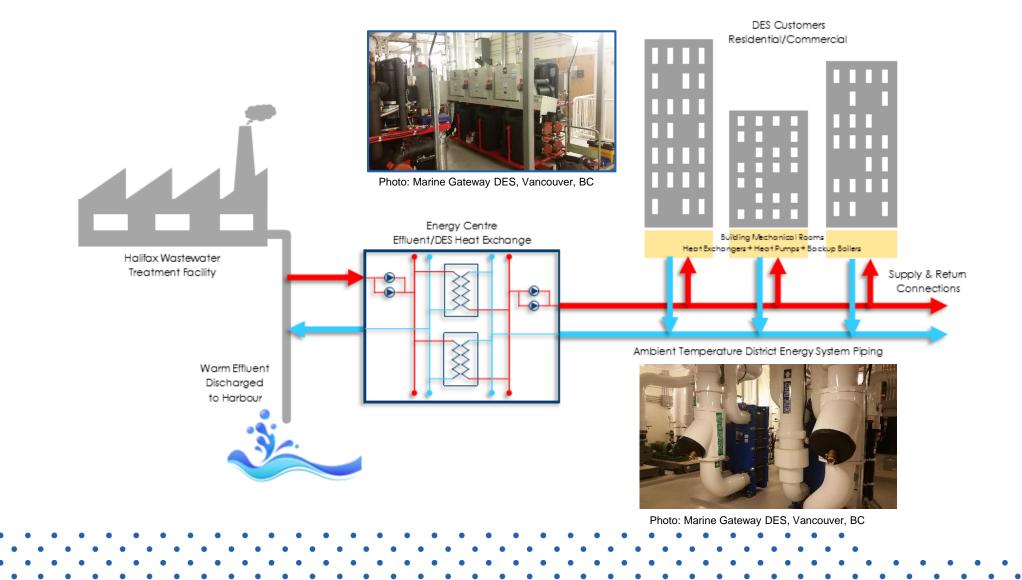
• Many other Canadian, US, European and Asian Systems

\* Examples of municipally mandated district energy systems



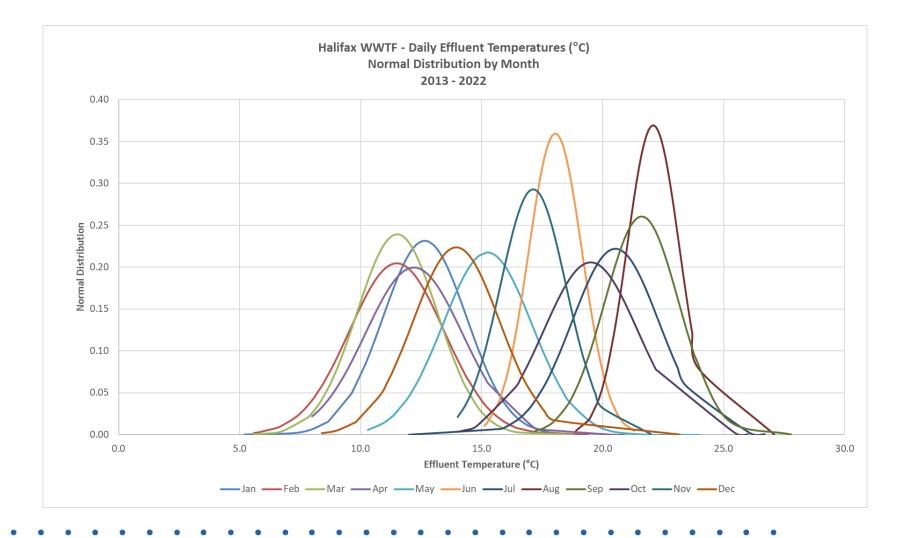
# **District Energy at Halifax Water**

- HRWC considering DE in downtown Halifax and Mill Cove (Bedford) areas since <2010.
- 2012 HRWC Act amendments to allow the utility to engage in business activities related to the generation of energy in whole or in part from by-products of its operations.
- 2016 Feasibility study completed by DEC Engineering for Halifax Water shows a positive business case for a DES within the Cogswell Redevelopment Area.
- Ambient Temperature DES shown to be the most promising, cost effective and efficient DES for the Cogswell area.
- This project aligns with our core values of environmental stewardship, HRM's Community Energy Plan, and Municipal, Provincial and Federal clean energy and environmental objectives, and benefits our customer base.



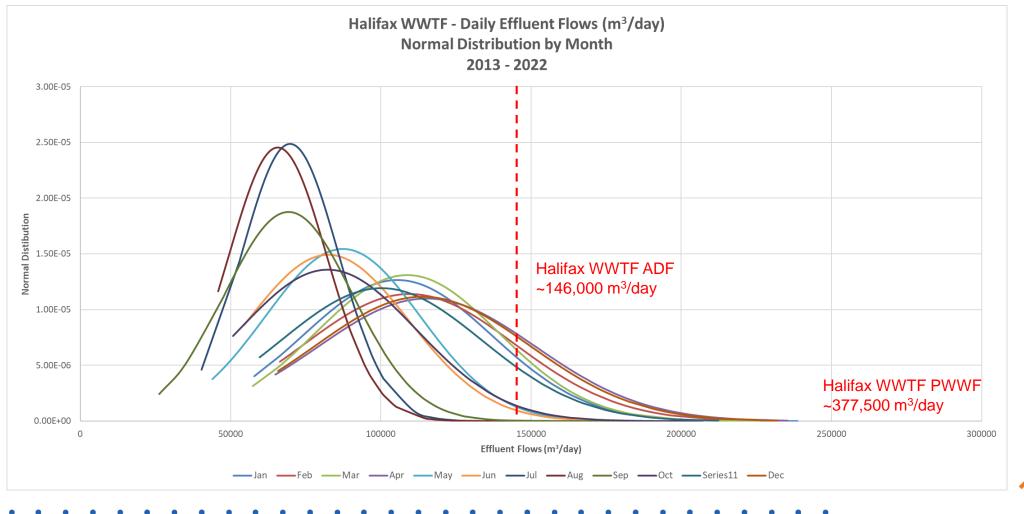

### **Cogswell District Energy System**





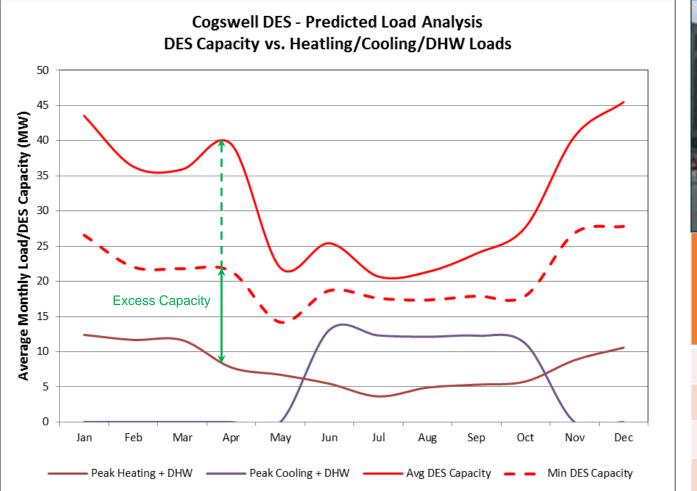

# **Cogswell ATDES**

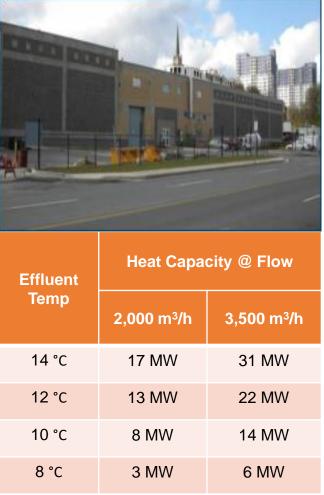





#### Halifax WWTF Effluent Temperatures







# Halifax WWTF Effluent Flows





#### Halifax WWTF Effluent Heat Capacity







# **Heating Source Energy Comparison**

|                                                             | Electric<br>Baseboard<br>Heating | Air Source<br>Heat Pump<br>Heating | Gas Hydronic<br>Heating<br>(BAU) <sup>(4)</sup> | Oil Hydronic<br>Heating | WSHP with<br>ATDES                          |  |
|-------------------------------------------------------------|----------------------------------|------------------------------------|-------------------------------------------------|-------------------------|---------------------------------------------|--|
| Energy                                                      |                                  | 1 MWh                              |                                                 |                         |                                             |  |
| Fuel Source                                                 | Electricity                      | Electricity                        | Natural Gas                                     | Heating Oil             | Electricity + Waste<br>Effluent Energy      |  |
| Efficiency                                                  | 100%                             | 240%                               | 85%                                             | 80%                     | 420%                                        |  |
| Fuel Use                                                    | 1.00 MWh<br>Electricity          | 0.42 MWh<br>Electricity            | 1.18 MWh<br>Natural Gas                         | 1.25 MWh<br>Heating Oil | 0.24 MWh<br>(Electricity)<br>0.76 MWh (DES) |  |
| Fuel Rate<br>(\$/MWh)                                       | \$162.15 <sup>(1)</sup>          | \$162.15 <sup>(1)</sup>            | \$81.72 <sup>(2)</sup>                          | \$116.17 <sup>(3)</sup> | \$162.15 <sup>(1)</sup>                     |  |
| Fuel Cost<br>(\$/MWh<br>Delivered Heat)                     | \$162.15                         | \$68.10                            | \$96.42                                         | \$145.21                | \$38.60                                     |  |
| GHG Emissions<br>(tCO <sub>2</sub> e/MWh<br>Delivered Heat) | 0.603 <sup>(6)</sup>             | 0.251                              | 0.212                                           | 0.313                   | <b>0.144</b> <sup>(5,6)</sup>               |  |

Notes:

(1) Based on NSPI Rate Class 2 – Domestic, 2022.

(2) Based on average 2022 Heritage Gas Rate 1a @ \$22.70/GJ.

(3) Based on #2 Fuel Oil @ \$1.25/L.

(4) BAU = Business As Usual.

(5) Does not include GHG emissions from back-up heat source (NG).

(6) Based on NSPI System Total Emission Intensities, 2021.



# **Cooling Source Energy Comparison**

|                                                     | Air Source<br>Heat Pump | WSHP Loop with<br>Cooling Tower | WSHP with<br>ATDES                                |
|-----------------------------------------------------|-------------------------|---------------------------------|---------------------------------------------------|
| Space Cooling                                       |                         | 1 MWh                           |                                                   |
| Fuel Source                                         | Electricity             | Electricity                     | Electricity +<br>Effluent Heat Sink               |
| Energy Efficiency Ratio<br>(EER)                    | 12.5                    | 12.4                            | 22.0                                              |
| Fuel Use                                            | 0.27 MWh<br>Electricity | 0.28 MWh<br>Heating Oil         | 0.16 MWh Electricity<br>+ 1.16 MWh DES            |
| Fuel Rate<br>(\$/MWh)                               | \$162.15 <sup>(1)</sup> | \$162.15 <sup>(1)</sup>         | \$162.15 <sup>(1)</sup><br>(Electricity)          |
| Fuel Cost<br>(\$/MWh delivered cooling)             | \$68.11                 | \$94.48                         | \$38.60                                           |
| Fuel GHG Intensity<br>(tCO <sub>2</sub> e/MWh)      | 0.603 <sup>(2)</sup>    | 0.603 <sup>(2)</sup>            | 0.603 (Electricity) <sup>(2)</sup><br>0.013 (DES) |
| GHG Emissions<br>(tCO <sub>2</sub> e/MWh delivered) | 0.163                   | 0.169                           | 0.110                                             |

#### Notes:

(1) Based on NSPI Rate Class 2 – Domestic, 2022.

(2) Based on NSPI System Total Emission Intensities, 2021.



# **Cogswell DES Benefits**

- Demonstrates environmental leadership
- DE is a proven and reliable technology, with demonstrated cost and environmental benefits
- Excess energy availability near the Cogswell development
- More cost effective + rate stability vs. conventional energy sources
- Halifax Water Ownership Advantages
  - Existing Operating Expertise & Customer Service Systems
  - Lower Cost to Operate
  - Lower Cost to Finance
  - Secure Public Utility
- ATDES's Suitable for Energy Sharing
  - Hot Water Solar
  - Building to Building Heat Sharing
  - Other opportunities ...



# **Progress to Date**

- HRWC Act amendments to allow the utility to engage in business activities related to the generation of energy in whole or in part from by-products of its operations
- Through the Province, HRM has completed amendments to its Charter to allow HRM to consider district energy and has enacted by-law D-500 respecting mandatory connection within the Cogswell RDA.
- Application with UARB for approval to form the DES utility, complete the Cost-of-Service model and Rate Design, Utility Regulations, and begin detailed design of the remaining DES components.
- Completed a Canadian municipal DES by-law review.
- Completed 100% detailed design for the linear infrastructure.
- HRM approved the Cogswell RDP in September 2021, and the project is now in the construction phase, including the DPS.
- Completed a draft DES stakeholder information package to be used to promote district energy and specifically the Cogswell DES.
- Received \$10,263,267 in funding from the Investing in Canada Infrastructure Program (ICIP) Green Infrastructure, Climate Change Mitigation stream via the Governments of Canada and Nova Scotia



# **Cogswell DES – DPS Construction**









#### **Next Steps**

- Seek direction from UARB on regulatory status and approvals at each stage.
- Complete detailed designs for the Energy Centre, Building Energy Transfer Stations, and the Building Design Specification Guidelines.
- Update and evaluate the business case at each milestone to ensure the business case remains positive.
- Develop the Cost-of-Service Model, establish Rules & Regulations, and develop Rate Structures.
- Construction of the DES DPS in conjunction with Cogswell Redevelopment Project.



#### **Estimated Timelines**

- Cogswell RDP 2025 <sup>(1)</sup>
- DES Utility Approval (UARB) Spring 2023 <sup>(2)</sup>
- DES Construction (Energy Center) 2024 to 2026 <sup>(2)</sup>
- 1<sup>st</sup> Building Constructed 2025 to 2027 <sup>(2)</sup>
- $2^{nd} 6^{th}$  Buildings Constructed 2027 to 2035 <sup>(3)</sup>

Notes:

- (1) Based on latest HRM construction schedule.
- (2) Assumption.
- (3) Assumption based on constructing one building every 2 years.





#### For Further Information Contact:

Jeff Knapp, FEC, P.Eng., CEM, CAMP Sr. Manager, Energy & Business Development Halifax Regional Water Commission (902) 471-2791 jeffreyk@halifaxwater.ca