Jarrett Carriere, P.Eng., CEM. Associate, Chief Energy Systems Engineer jcarriere@jlrichards.ca

November 9, 2022

Solar and Batteries: Economics and Resiliency

Agenda

Overview of JLR Innovative Energy team

Understanding the use of PV and BESS

Project/Technology Examples

Discussion

Multidisciplinary Services

Innovative Energy

- Advisory Services Energy Assets
 - Renewable Energy Supply & Storage
 - Energy & Carbon in Buildings
 - Environmental Infrastructure Mining
- Energy & Carbon Strategy (portfolios, campuses)

Solar and Batteries Cost Savings, GHG Reduction, and Resiliency Opportunities

Halton Oakville WTP Solar and Batteries

Feasibility study covering many Solar and Batteries scenarios

Design within WTP upgrade project (in progress)

 116 kW PV (Phase 1), 2 MW / 2 MWh BESS for peak shaving and standby power

Charge categories	Billed based on		
Consumption Charges	\$/kWh		
Peak Demand Charges	\$/kW during key times		
Regulatory & Delivery Charges	Often both \$/kWh and \$/kW (usually small)		

	Charge categories	Billed based on \$/kWh		
•	Consumption Charges			
	Peak Demand Charges	\$/kW during key times		
	Regulatory & Delivery Charges	Often both \$/kWh and \$/kW (usually small)		

A) Varies on hourly basis in electricity markets (Alberta, Ontario)

Charge categories	Billed base	ed on
Consumption Charges	\$/kWl	'n
Peak Demand Charges	\$/kW during k	key times
Regulatory & Delivery Charges	Often both \$/k \$/kW (usually se	kWh and / mall)
A) Varies on hourly electricity markets (Ontario)	basis in Alberta,	

	Charge categories	Billed based on				
	Consumption Charges	\$/kWh				
	Peak Demand Charges	\$/kW during key times				
	Regulatory & Delivery Charges	Often both \$/kWh and \$/kW (usually small)				

A) Varies on hourly basis in electricity markets (Alberta, Ontario)

B) <u>Monthly</u> peak demand typically a small charge, but Ontario "Class A" has a special charge structure

A) "kWh" Value of Solar Across Canada

Levelized Cost of Energy (\$/kWh)

A) "kWh" Hourly Markets – Batteries

- Energy Arbitrage (Buy low, Sell High) better with a large delta
- JLR is currently working on 3 Utility scale solar & battery projects in Alberta (>60MW solar, >100 MWh Battery), that will provide services to the Alberta grid purely on a market basis
- Ontario's upcoming LT1 Procurement process is looking for at least 1,500 MW of electrical storage (minimum 4-hour duration) for capacity contracts – to manage peaks.

Charge categories	Billed based on
Consumption Charges	\$/kWh
Peak Demand Charges	\$/kW during key times
Regulatory & Delivery Charges	Often both \$/kWh and \$/kW (usually small)
C) Varies on hourly electricity markets (Ontario)	basis in Alberta,

B) "kW" Value of Batteries "Class A" Structure

- "Class A" are "Big" users in Ontario
- Pay their "share" of Ontario's peak based on their consumption during the Province wide 5 peaks (5CP)

GA Year	2011/	2012/	2013/	2014/	2015/	2016/	2017/	2018/	2019/	2020/	2021/	2022/
	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
\$/kW5CP	\$252	\$282	\$260	\$393	\$545	\$518	\$505	\$549	\$608	\$527	\$339	?

It had been rising over the years

the Ontario gov't transferred non-hydro renewables out of the GA bucket, and COVID-19 also caused some anomalies

B) "kW" Value of Solar "Class A" Structure

- Strong correlation between
 Ontario grid peaks and solar
- JLR's detailed analysis of historic hourly data finds that <u>up to 50% of PV</u> nameplate is available (on average)
- This is worth a lot for the Class A rate structure

B) "kW" Value of Solar "Class A" Structure

Additional benefits

- provides coverage throughout the day
- If GA value ↓ then hourly market prices (HOEP) ↑
- Visible to public, additional use of rooftops
- GHG reductions

B) "kW" Value of Batteries Most Others ("non-Class A")

Other benefits of Solar and Batteries GHG Emission Reductions

GHG Emissions Reduction Solar

- Reduced grid energy consumption through self supply of renewable energy
- Additional benefit of solar due to marginal vs average grid emission factor

GHG Emissions Reduction Batteries

- Lower, depends on operating strategy.
- Hourly Ontario emissions factors are available on-line (through API) – can include in a multi-factor operational strategy

Other benefits of Solar and Batteries Resiliency

. . .

- Continued plant operation during grid outages possible with a Battery – replace back-up generators?
- Can be coupled with Solar to provide supplemental power

Image from: <u>https://www.eaton.com/ca/en-</u> gb/catalog/services/microgrid-and-distributed-energy-resources.html

Conclusions

Rate Structure details matter, and can be complicated

Technologies are grid competitive, and they have value for multiple functions

GHG reductions and resiliency improvements are just two of the many benefits

Halton Oakville WTP Solar and Batteries

Feasibility study covering many PV and BESS scenarios

Design within WTP upgrade project (in progress)

 116 kW PV (Phase 1), 2 MW / 2 MWh BESS for peak shaving and standby power

Saskatchewan Solar Feasibility

Site	Energy Generation (kWh)	GHG Reductions (tonnes CO2eq)	Electrical Review	Structural Review	Roof Replacement Due	Interconnection Review	Payback (years)	\$/W DC	LCOE (\$/kWh)	Lifetime Carbon Cost Effectiveness (\$/tonne CO2eq)
ACT	421,418	83	Study Required	No Upgrades	2037	SL&P	23	\$1.39	\$0.1244	\$247
СН	184,900	37	No Upgrades	Study Required	2034	SL&P	24	\$1.56	\$0.1457	\$302
FH3	39,010	8	Study Required	Upgrades Likely	2043	SL&P <100 kW	26	\$2.59	\$0.2244	\$509
LCC	114,600	23	No Upgrades	No Upgrades	2039	SaskPower Limited	26	\$1.98	\$0.1532	\$350
PHQ	566,900	112	No Upgrades	Upgrades Likely	2040	SL&P	26	\$1.63	\$0.1630	\$317
SFH	703,300	139	Upgrades Likely	No Upgrades	2020	SL&P	14	\$1.34	\$0.0937	\$236
CSE	117,070	23	No Upgrades	No Upgrades	2021 Complete	SL&P	22	\$1.90	\$0.1311	\$358
WWTP – RT	390,200	77	Study Required	Upgrades Likely	Unknown	Load Displacement	26	\$2.16	\$0.1836	\$398
WWTP - SGM	2,175,300	431	Study Required	N/A	N/A	Load Displacement	16	\$1.56	\$0.0836	\$229
WWTP - LGM	22,000,000	4,331	Study Required	N/A	N/A	Revenue System	13	\$1.10	\$0.0637	\$172

Oxford County Long-term Renewable Energy Plan

- Identify viable projects to support 100% renewable energy by 2050.
- Review of 41 municipal facilities x 14 technologies
 - Desktop analysis with utility data via a screening tool
 - Assess size, energy/carbon savings, capital costs
 - Feasibility studies and reports of the top 10 projects.

Screening Tool Output Sheet

Renewable Energy Opportunities at WWTP

Discussion

Thank you!

Jarrett Carriere, P.Eng., M.A.Sc., C.E.M. Associate; Chief Energy Systems Engineer Ph: 343 302-5438 Email: jcarriere@jlrichards.ca

Platinum member

www.jlrichards.ca