

Challenging today. Reinventing tomorrow.

Legacy Aluminum in the Distribution System: Impacts on Corrosion Control with Orthophosphate

Monique Waller¹, Rich Giani⁴, Sandra Latorre¹, Danny Locco², Monica Reid³

November 9, 2022 National Water & Wastewater Conference Halifax, NS

¹ Jacobs ² City of Hamilton ³ ENWIN Utilities Ltd. ⁴ CDM Smith

Presentation Outline

- Legacy aluminum in the distribution system
 - How does it get there?
 - What are the impacts?
- Implementing orthophosphate in the presence of legacy aluminum: case studies
 - Selecting the appropriate orthophosphate dosage & developing an implementation plan
 - Observed lead reduction at 2 mg/L as PO₄
 - Observations of secondary impacts and their control

Summary

Legacy Aluminum in the Distribution System

Sources and Impacts

How Does Aluminum Get in the Distribution System?

- Aluminum can be present in treated water from the use of aluminum-based coagulants in a non-optimized coagulation process
- The speciation and solubility of coagulants are impacted by temperature and pH, which vary seasonally
- Many WTPs treating Great Lakes waters experience high residual dissolved aluminum in treated water, particularly in the summer months
- Aluminum can also be released in localized areas from cementitious pipes and cement mortar linings when watermains are relined

What Happens to Dissolved Aluminum in the Distribution System?

- Post-precipitation of dissolved aluminum and flocculation can occur in the distribution system if the pH decreases below the pH of coagulation
- Deposition of gelatinous aluminumcontaining substances or aluminumcontaining crystalline solids in watermains may also occur
- Accumulation can occur in areas of low flow, such as dead-ends and reservoirs
- Release of deposits at very high concentration can occur from hydraulic surges such as watermain breaks

Example of gelatinous aluminum deposit

Example of aluminum silicate scale

Flush water containing 38 mg/L aluminum

What Are the Impacts of Aluminum in the Distribution System?

Hydraulic/ Pressure	 Increased hydraulic friction from deposits/scales, reducing the distribution system's carrying capacity, increasing pressure losses, and increasing the energy required for pumping Deposition within water meters and service lines can cause water meter malfunctions and low household water pressure
Water Quality	 Floc and released deposits can impart turbidity and/or milky colour to the water, causing aesthetic impairment Floc, deposits, and scales can provide a substrate upon which other trace metals can adsorb or co-precipitate Accumulated trace metals can be released at high concentrations due to desorption or particle detachment Dissolution of previously precipitated deposits and scales can be a source of aluminum
Secondary Disinfection	 High levels of aluminum may interfere with secondary disinfection due to enmeshment and protection of microorganisms
Corrosion Control	 The reaction of orthoPO₄ with aluminum produces a precipitate that can give water a "milky" appearance Aluminum can behave as a sink for dissolved orthoPO₄, reducing the residual available for corrosion control Deposits can lessen the efficacy of corrosion control by interfering with the development of protective corrosion scales Impacts expected with orthoPO₄ > 3.0 mg/L as PO₄ and aluminum >0.1 mg/L

Guideline	Value	Applicability	Purpose		
USEPA Secondary MCL	50 to 200 μg/L	Applies to point-of-entry	Prevent discoloured water		
Operational Guideline (Ontario) Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines (2003, rev. 2006)	100 µg/L	Applies to point-of-entry	Prevent coating of pipes in the distribution system, interferences with certain industrial processes, and flocculation in the distribution system.		
Operational Guideline (Health Canada) Guidelines for Canadian Drinking Water Quality: Guideline Technical Document – Aluminum (2021)	100 µg/L	Applies to point-of-entry and distribution system . For facilities that use aluminum-based coagulants, the OG applies to a locational running annual average calculated based on daily samples that are averaged on a monthly basis.	Minimize accumulation and release of aluminum and co-occurring contaminants and coating of pipes and appurtenances.		
Maximum Acceptable Concentration (Health Canada) Guidelines for Canadian Drinking Water Quality: Guideline Technical Document – Aluminum (2021)	2,900 µg/L	Applies to the distribution system and point-of- consumption . For facilities that use aluminum- based coagulants, the MAC applies to a locational running annual average calculated based on a minimum of monthly samples collected from the distribution system.	Health-based (neurological effects observed in rats)		

Guidelines for Aluminum in Treated Water and Distribution System

Consider a target <100 µg/L when implementing phosphate-based corrosion control

©Jacobs 2022

Implementing Corrosion Control in Systems With Legacy Aluminum

Strategies and Outcomes

System Characteristics

	Windsor					Hamilton				
Serviced population		~270,000				~570,000				
Size of distribution system	~1,100 km					~2,000 km				
Source water	Detroit River (Lake St. Clair)					Lake Ontario				
pH control	CO ₂ ahead of coagulation						None			
Corrosion control treatment	Orthophosphate, 2.0 mg/L as PO ₄			04	Orthophosphate, 2.1 mg/L as PO ₄					
Year implemented	August 2016				November 2018					
Average treated water pH		7.	0					7.8		
Average treated water alkalinity	80	6 mg/L as CaCO ₃				86 mg/L as $CaCO_3$				
Secondary disinfectant		Free chlorine				Chloramine				

Corrosion Control Approach

Plan

- Both systems completed a Corrosion Control Plan per MECP's Guidance Document for Preparing Corrosion Control Plans for Drinking Water Systems
- Phosphate-based corrosion control identified as preferred for both systems

- **Pre-filter orthoPO₄ dosing** in Hamilton to mitigate aluminum impact
- Flushing before/during/after implementation to mitigate secondary impacts

Monitor

- Both systems implemented a distribution system water quality monitoring program to assess corrosion control effectiveness and aesthetic impacts
- Hamilton installed **pipe loop monitoring stations** in the distribution system

Study

- Both systems completed a **Pipe Loop Study** to identify the preferred treatment chemical, dosage, and pH
- Hamilton completed a **flushing study** which confirmed presence of **legacy aluminum in distribution system**
- Orthophosphate dose targets confirmed at 2.0 mg/L as PO₄ (Windsor) and 2.1 mg/L as PO₄ (Hamilton) based on these studies and lessons learned from Washington DC

due to Al-PO₄ precipitation

Washington DC

- Lead release event due to the switch from free chlorine to chloramine in 2001
- Initial orthoPO₄ dosage of **3.5 mg/L** in 2004
- After 1.5 years, reduced to 2.5 mg/L due to widespread milky water episode resulting from orthoPO4 precipitation with aluminum (treated water dissolved aluminum ~100 µg/L)

Observed Lead Reduction – At Tap

Schedule 15.1 Residential and Non-Residential Lead, 90th Percentiles

Observed Lead Reduction – Pipe Loop Monitoring Stations

Pipe loop monitoring stations confirmed results observed from at-tap sampling Post-corrosion-control lead consistently below MAC

©Jacobs 2022

Total lead

Evidence of Lead-Phosphate Scale Formation

OrthoPO₄ has penetrated amorphous aluminum deposits to form phosphatebased lead scale at the pipe surface

SEM/EDS and XRD Scale Analysis

Wednesday November 9, 2022 | National Water & Wastewater Conference | Halifax, NS

O Treated water aluminum

Raw water temperature

Aluminum Best Practice (50 µg/L)

Aluminum Operational Guideline (100 µg/L)

Residual Aluminum in Treated Water

J-19 S-19 N-19 J-20

M-19 M-19

30

27

24

21

18°

emperature, 81 [emperature]

6

Aluminum in Hydrants and Residential Samples – Windsor

Significant accumulation and release of aluminum can occur even with treated water aluminum below OG – important to monitor Aluminum-phosphate precipitation was observed but did not result in widespread aesthetic impact like that observed in Washington DC

Percent of Samples Above Target – Hydrants

Prior to corrosion control, majority of aluminum in the distribution system was dissolved Reduction in treated water Al from pre-filter orthoPO₄ dosing has helped control Al in the distribution system to ~50 μ g/L during warmer months

Al precipitation is occurring and has increased post-corrosion-control and the precipitate is mobile

©Jacobs 2022

Total aluminum, Site 1 Total aluminum, Site 2 Total aluminum, Site 3

Flushing has helped to remove accumulated aluminum, spread orthoPO₄, and maintain chlorine residual by temporarily reducing water age

Key Takeaways

Summary

- Residual aluminum in treated water from the use of aluminum-based coagulants can accumulate in distribution systems, potentially impacting hydraulics, water quality, secondary disinfection, & corrosion control
- **Coagulation optimization** can reduce residual dissolved aluminum in treated water
- Two systems with legacy aluminum implemented phosphate-based corrosion control
 - An initial orthophosphate dose of 2 mg/L as PO₄ was applied in anticipation of potential aesthetic impacts caused by the precipitation of aluminum with orthoPO₄ above 3 mg/L as PO₄
 - In the absence of pH control at their WTP, Hamilton utilized pre-filter orthoPO₄ dosing to precipitate and remove aluminum in the treatment process, preventing it from entering the distribution system
 - Rapid lead reduction was observed at 2 mg/L as PO₄ with gradual reduction ongoing
 - Aluminum-based amorphous deposits were confirmed to be present in lead service lines, but scale analysis confirmed that orthoPO4 had penetrated these amorphous deposits, forming phosphate-based scale at the pipe surface
 - Despite evidence of aluminum-phosphate precipitation, no widespread "milky water" aesthetic impact was observed in either system, due to the lower initial orthophosphate dose and control of treated water aluminum to <100 µg/L
 - Distribution system water quality monitoring and flushing were key strategies used to proactively manage aluminumphosphate precipitation

Acknowledgements

Thank you to the co-authors and the following individuals who have supported these projects!

- Jacobs: Kyle Langan, Caroline Di Tommaso
- ENWIN: Garry Rossi, David Middleton, Chris Manzon
- City of Hamilton: Martha Kariuki, Jay Fox, Dave Alberton, Peter Nikolica
- City of Hamilton Environmental Lab
- McMaster University's Analytical X-Ray Diffraction Facility and Canadian Centre for Electron Microscopy
- Western University's Surface Science Western

Thank You!

monique.waller@jacobs.com danny.locco@hamilton.ca mreid@enwin.com

