Stormwater Control Infrastructure: An investigation of four case studies

Negin Binesh ^{1,2}, Emmanuel Demard ¹, Veronique Guay ¹, Kelly Proteau ¹, Sophie Duchesne ¹, Mohammad Hossein Niksokhan², Amin Sarang², Geneviève Pelletier³

¹ Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement

² Department of Environmental Engineering, Faculty of Engineering, University of Tehran

³ Department of Civil Engineering and Water Engineering, Université Laval

November 2022

Canadian Water and Wastewater Conference November 6-9, 2022; Halifax, Nova Scotia

Introduction: The need for using Stormwater Control Strategies

Increasing Urbanization and Rapid Urban Development

Increased Impervious Surfaces

Impact on Stormwater Quantity

Impact on Water Quality

Pollutant transport to the natural environments

Introduction: Stormwater management Structures

Stormwater Management Structures

Mimicking the natural water cycle and Replicating the predevelopment hydrologic cycle

Stormwater Quantity Control:

- Control flows to prevent stream erosion and flooding

Stormwater Quality Control:

- Remove sediments and various pollutants

- Stormwater quality performance assessment
- Two types of LID-BMPs
- Located in Quebec, Canada
- Between July 2020 and November 2021

Source control infrastructure cover around 60% of the parking area;

1st Case

Study

Source control infrastructure captures the surface runoff from approximately 58% of the impermeable surface of the parking lot.

Located at the intersection of \bullet exit ramp 18 of Highway 132 and Montarville Boulevard,

The site has a total area \bullet of 1.20 ha.

Introduction to the study site

Location of honeycomb permeable pavement (in orange boxes)

1st Case

Study

Introduction to the study site

Location of interlocking permeable pavement

1st Case

Study

Shown in blue (0.52 ha)

Introduction to the study site

Location of 13 Bioretention cells (in yellow boxes)

1st Case

Study

Materials and Methods:

1st Case Study Materials and Methods: Sampling Techniques

Manual sampling(Impermeable parts (P14))

Automatic sampling(Storm sewer network(RP1 and RP2-B))

1st Case Study

Limitations: Gaps between the curb and the sedimentation basin

Bypass of the sediment storage basin by runoff water entering a bioretention cell (the red outline represents the runoff path)

Spacing between the lowered curb at the entrance to a bioretention cell and a sediment storage pond

Dug soil at the entrance of a bioretention cell by runoff water

To improve the pollutants removal efficiency in the Design of Green Infrastructure:

1st Case

Study

- □ Both aerobic and anoxic conditions should be provided to allow for nitrogen removal;
- □ For phosphorus, the removal rate depends on the Retention Time and the Composition of the Soil (e.g. high percentages of organic matter).

- Water Quality (pollutant removal) Efficiency ullet
- Three different types of detention basins as End-of-Pipe Stormwater Control Structures
- In Southern Quebec
- June to September 2019 and 2020.

Stormwater (End-of-Pipe) Control Structures

2nd Case

- Quebec city

Residential area

Lots of vegetation

Small size (2300 m3)

with central flow channel

(DBC)

- City of Trois-Rivières lacksquare
- Large size (7800 m3)
- Little vegetation
- Residential area (under development) lacksquare

Stormwater (End-of-Pipe) Control Structures

Permanent retention basin

2nd Case

Study

- Quebec city
- Large size (23,380 m3)
- Commercial sector, along the highway

n3) along the highway

Qualitative Monitoring
hysicochemical characterization: • Suspended solids • Phosphorus • Nitrogen • Ions • Petroleum hydrocarbons • pH, conductivity, temperature
Madala
Wodels
lutant Loads at ne BMPs

Composite water samples were collected at the inlet and outlet of structures (i.e. Upstream and Downstream of gthe basins) to calculate the average concentration of pollutants for each rainfall event)

- Rainfall measurement at the three study sites (using tipping bucket rain gauges)
- Flow measurement (DDB and DBC) •
- Ultrasonic probe flow-meter (level and velocity)
- weir

2nd Case

Study

Pressure sensors (level) •

2nd Case

Hydrological/hydraulic modeling

SWMM \bullet

Study

- Quantitative data •
- Calibration and validation •

Generalized linear models

- R software
- Quantitative data + qualitative data \bullet
- Relationship between hydrological data (average ۲

intensity of rain) and the EMC of pollutants

Rain
$$\rightarrow$$
 SWMM \rightarrow Flow rate
Rain \rightarrow Generalized Linear Model \rightarrow EMC

Pollutant Load calculation

- 10-year rainfall time-series (Quebec City) lacksquare
- Incoming and outgoing load, removal rate lacksquare

$$L = \sum_{i=1}^{n} \overline{Q}_i \cdot \overline{C}_i \cdot d_i \cdot 0.0036$$

 \overline{L} is the pollutant load (kg/season) \bar{Q}_i is the average discharge of a rainfall event i (L/s) \bar{C}_i is the EMC of the pollutant during a rainfall event i (mg/L) d_i is the duration of event i (h)

n is the number of events in a season (June to October)

📛 DDB 📛 DBc 📋 RB

 \square DDB \square DB_C \square RB

Results: Ions (road salts)

Rasin	Removal rate (+) or increase (-) (median)					
Dasm	<u>C</u> l	Na+	Ca ²⁺	K+	Mg ²⁺	
DDB (n=9)	-64%	-59%	-29%	-36%	-53%	
DBC (n=8)	-28%	-57%	-2%	-12%	-29%	
RB (n=6)	-244%	-155%	41%	37%	-81%	

Simulated Summer Loads (June to September), over 10 years (2010 to 2019):

Parameter	Basin	Incoming load (kg/season)		Outgoing load (kg/season)		Load retained (kg/season)		Load removal rate (%)	
		Median	IQR	Median	IQR	Median	IQR	Median	IQR
TSS	DDB	674	187	470	131	204	58	30	1
	DBC	1849	461	459	103	1369	392	74	1
ТР	DDB	1.8	0.5	1.5	0.4	0.3	0.1	18	1
	DBC	2.6	0.6	1.3	0.3	1.3	0.4	47	3

(Even when considering uncertainties)

RB: Longer retention time in the basins with permanent pool — Particle Settlement

DDB: The lowest and most variable median removal rates

DBC:

Advantage

- The water volume permanently flowing in the central channel
- Increased Particle settling

- And High length to width ratio

Management of rainfalls with Lower Volume

□ Road Salt Accumulation (RB) was significant

Monitoring the conductivity or chloride concentration in the effluent from this basin over the

next few years is recommended;

The 3rd Case Study

3rd Case Study

Objective

Reducing the Sewer Surcharge Local and Flooding

The Basin and its tributary areas

- Mostly single-family residential buildings
- Impermeability: 42%

Introduction to the Case Study

Study area

Methodology

Source control solutions are selected by spatial analysis taking into account the built environment and vulnerable locations.

Selection

into a

int

3rd Case

Study

Units: Thousand cubic km for storage, and thousand cubic km/yr for exchanges

*1990s

□ Investigation use The Impeat of Climate Change on the Urban Drainage Performance (i.e. Resilience, Reliability, Vulnerability)

4th Case

Study

Introduction to the Study Area: City of Tehran

Covered by dense buildings, streets, and impermeable surfaces and a few parks.

- * Located in a semi-arid region in south of Alborz mountains.
- * A population of around 9 million, with an area more that 700 Km².

4th Case Study

Introduction to the Study Area: West Flood-Diversion (WFD) Catchment

Tehran Topography and Slope

City of Tehran

Source: Tehran Municipality

Ground slope in Tehran: From 15% in northern parts To 1% in southern parts

Boundary of

- Daily future projections of the model obtained from World Data Center (WDCC) Climate website (AR5);
- Under three Representative Concentration Pathways (RCP2.6, RCP4.5, and RCP8.5) scenarios;
- GIS was used for data extraction from the specific computational cell where the catchment is located in.
- Change Factor (CF) method was also used to downscale and correct the future projections.

Rainfall-Runoff Simulation

SWMM (Version 5)

4th Case

Study

Simulating a network composed of both open-channels and channels

with rectangular and horseshoe-shaped cross-sections

- Width of channels from 1.4 m to 30 m

- Channels' height from 1.4 m to 6 m.

System configuration in SWMM:

73 nodes plus an outlet, 74 links as drainage channels, Around 67 Km drainage channel was modeled.

covered	······

Type of analysis	Given variable at the outlet	MAE	RMSE
Calibration	depth	0.0081	0.0130
	velocity	0.0455	0.0614
Validation	depth	0.0106	0.0156
	velocity	0.0606	0.0744

The probability that a system will perform its intended function (without any failure) for a specified period of time.

The number of times the system succeeds to the total number of times it operates.

The system behavior in response to a disturbance

Different Levels of Recovery

- Permeable pavement

- Detention Basin

Not every location is appropriate for installing the Best Management Practices.

BMPs' effectiveness is highly dependent on geographic situation they are installed.

Multi-dimensional nature of BMPs

Scenarios for Solving the UDS problems

□ Increasing the UDS capacity up to 30%

4th Case

Study

Using auxiliary channels (parallel channels)

□ BMP implementation alongside the drainage system Only in Urban areas

BMP implementation alongside the drainage system both in Urbanized and Upstream suburbs

Full Adaptability

Climate change adaptability index (CCAI)

The extent of CCAI in different nodes of the UDS before and after BMP implementation

4th Case

Study

Increase in the amount and intensity and frequency of in the extreme-rainfall in the future for the studied

region.

Increase in the number of Surcharge Points and Flooded Nodes of the drainage system in the future.

Designing the Critical Infrastructures' capacity based on Future (predicted) changes.

The advantages of utilizing the BMPs in appropriate areas was confirmed.

Thank you for your attention!