

PILOT TESTING – A FUNDAMENTAL ELEMENT OF DESIGN

NWWC 2022

arva

> Pilot testing can be valuable when designing or operating a water or wastewater treatment system

> Why testing?

- > Types of testing
 - Bench scale
 - Pilot testing
- > 3 Case Studies

- Industry standard design guidelines can inform general sizing
- Past experience from operators, consultants, suppliers
- Performance of treatment system can be significantly impacted by source water matrix
- > Use of standard guidelines could potentially lead to
 - Over sizing treatment system
 - Under sizing treatment system
- > New treatment process
 - Big investment
 - Make sure it is the best alternative

- > Testing for specific water sample
- > Define broad range of design parameters
- > Help to optimize operation
 - Jar testing for coagulant and polymer dosing
- > Screen potential treatment technologies
 - Confirm ability to meet treatment objectives
- > Limitation
 - Results are only for snap shot in time
 - Seasonal changes in water quality may not be captured
 - Longer performance items like filter run time may not be assessed.

Equipment Supplier

- > Operations provide water samples
- > Bench -scale jar tests conducted by suppliers
- > Equipment Surveys based on bench scale testing results to support design

Independent Lab

- >Less "ownership" by suppliers
- > Separate from supplier to avoid procurement concerns
- > Good for initial stages of design

- Real time results over longer period of time
- Temporary pilot plant

PILOT TESTING

- Solve immediate problems
- Explore alternative treatment technologies
- Often trailer mounted type systems
- Can be customized to mimic full scale equipment
- Permanent pilot plant
 - Used to refine design parameters
 - Aid in operations
 - Determine impact of changes to flow, chemical dosage, filter media etc.
 - Allow operations to experiment in a way that could not be comfortable done at full scale

arva

Chemical processes (THM reduction, coagulant selection)

> Biological processes (crypto control, Biofiltration)

Х	> Hydraulics	(flocculation	speeds)
---	--------------	---------------	---------

- > Conventional situations with un-challenging water
- Existing System (Optimizing chemical doses)

	> Directly	comparing	treatment	alternatives
$\mathbf{\nabla}$		companing	ucument	alternatives

ଔrva

CASE STUDIES

- > River water source with distinct seasonal variations
 - Spring run-off high color, some turbidity and T&O
 - Summer algae, turbidity, T&O
 - Fall lake turnover, turbidity and high color
- > Challenge What treatment process to choose?

Grva

S pring Treatment S creening

- >Bench scale studies first
 - screen treatment alternatives
 - gain information for cost comparison
- Colour Treatment screening
- Pre-Oxidation– Independent Lab
 - Actiflo Supplier Lab
 - DAF (high rate) Independent Lab
 - Conventional Treatment Independent Lab
- > T&O Treatment screening
 - UV/ H_2O_2 Supplier

Summer T&O Testing

- > Competitive Pilot Testing 4 weeks in summer
 - Evaluate how each treatment might affect water quality to enhance or impair subsequent T&O Process
 - Gain operating information for cost comparison
- > T&O Treatment screening of Pilot Tested prtreated water
 - GAC Independent Lab
 - Contact time for TOC and T&O removal
 - Estimated GAC replacement frequency
 - UV/ H_2O_2 Supplier
 - Trucked water sample for pilot test
 - Ozone Independent Lab
- > Information for cost comparison

- Comparative Life Cycle Cost \$16
 Comparison \$14
 - Capital Costs
 - O&M Costs from <u>testing</u>
- > Pre-S election of High Rate Clarification Equipment
 - Performance guarantee
 - Capital and O&M costs
 - Equipment footprint
 - Technical considerations
- >Result was a close race
 - DAF was selected

TESTING COSTS

Bench Scale Testing

S pring R un-off testing

\$50k

Summer T&O testing

\$59k

Fall Color Event testing

\$35k

Pilot Testing

\$31-\$43k each supplier

Only paid for unsuccessful proponent

Total less than 1% of construction cost for confidence in the selected treatment train and design parameters Construction

\$24M

- > Health Canada reduction in AO, with Ontario expected to follow
- > Raw water levels were below 0.05 mg/L but above operating target of 0.015 mg/L
- > Greensand Filtration
 - Tried and true technology, but low source levels could impact removal rate, also, could we achieve much higher than standard filtration rates?
- > Piloting completed to
 - Confirm technology performance
 - Prove loading rates and compare media
 - Address site specific water quality

PILOT TESTING TO PROVE PERFORMANCE

- > Independent company
 - 14-day trials using trailer mounted pilot
- > Results proved:
 - Higher loading rates (+24 m/hr) successful
 - Multiple media alternatives
 - Confirmed filter run time (>5 days)
 - No impact of recycling supernatant on run time
- > Copper > Provincial water quality objectives in residuals
 - << drinking water standards
 - impacted alternatives for backwash waste management
- > Longer pilot duration would have been beneficial
 - Did not see sufficient solids in sludge for settling testing

\$45k - Less than 0.2% of \$30M construction cost estimate

Grva

challonging river row water course

- > WTP with challenging river raw water source
 - Ammonia, Organics, Disinfection By-products, T&O, bromide
- > Ozone was chosen to be added upstream of filters to:
 - 🕕 coagulant use
 - 🚺 chlorine demand
 - $(\overline{\downarrow})$ THMs and HAAs reduction could be 50%
 - \bigcirc T&O in summer reduction could be 50 to 78%
 - 介 overall treated water quality
- > What ozone dose?
 - Unused generator capacity is costly
 - Hydrogen peroxide for advanced oxidation needed?
- > What filter media design?
 - GAC, Anthracite, Filtralite? T&O or THM reduction from biofiltration?

- > Owner designed the Pilot System
- > Our team helped define pilot objectives, pilot testing plan, and review results

> Goal 1: Design

- Pilot was operated for approx. 1-year to account for seasonal variation
- > Goal 2: Optimize operation
 - Coagulant/polymer dose in pre-treatment
 - Ozone dose
 - Cost benefit analysis of chemical consumption

\$200 to 400k + staffing and engineering support -Less than 1% of \$55M construction cost

- Determine goals MOST IMPORTANT STEP!
 - What defines a success?
 - What results are unacceptable?
 - If not clearly defined, risk spending money and time without achieving desired results
- Refine and reduce objectives
 - Never just one problem to be solved!
 - Reduce goals to a manageable and testable number
 - One or two goals can take weeks or months to properly address
 - Need to be able to manage large amounts of data and isolate important results

- Poorly defined goals and objectives
- > Not enough attention paid to specific scientific method/protocol
- > Not enough staff
 - Full time job for one operator
- > Uncommitted management

- > Pilot Testing:
 - Instills confidence in process selection
 - Confirms or defines detailed design parameters for right sizing systems
 - Offers preview of operating costs
 - Optimizes treated water quality
 - Optimizes cost of operation